
How to define the colour ranges for an automatic detection of coloured objects

The colour detection algorithms scan every frame for pixels of a particular quality. To

recognize a pixel as part of a valid object, its Y, U and V components must fall within

the ranges defined in the Thresholds section of the colour definition file. The latter is a

regular text file with at least two sections, Colors and Thresholds. The Colors section

has an entry for each object to be detected. It defines an RGB colour triplet, a merge

parameter (0 … 1), a colour identifier (0 … 31) and a colour label (text). Every entry

in Colors must have a corresponding entry in Thresholds. The latter defines ranges for

a pixel’s Y-component (brightness), its U-component (first colour attribute) as well as

its V-component (second colour attribute). A typical colour definition file has the

following structure:

[Colors]

(255, 255, 0) 0.95 0 yellow

(255, 0, 0) 0.95 1 red

(0 , 0, 255) 0.95 2 blue

[Thresholds]

(228:234, 12:28, 130:134) % too narrow yellow

(88:98, 110:118, 185:197) % working red

(115:136, 191:203, 59:70) % too narrow blue

[not used...]

(218:234, 8:32, 127:135) % working yellow

(88:98, 108:120, 185:197) % working red

(96:148, 175:204, 59:79) % working blue

The section following the [not used…] tag is ignored. In fact, the algorithms only read

as many lines from the Thresholds section as there are in the preceding Colors

section. This makes it easy to experiment with differing colour schemes. To change

from one scheme to another, simply exchange the contents of the two sections

Thresholds and not used…. Comments such as the ones found in the Thresholds

section are ignored during the parsing of a colour definition file.

A suitable choice of these ranges can easily be made using the camera training

utilities trainCamera (working of live images from the camera or a pre-recorded AVI

movie) and trainStill (working of a pre-recorded image file, image format: YUYV). A

chosen colour scheme can then be tested using the MATLAB m-file script test.m. The

following graphs present screen shots which have been made using these utilities.

trainStill

This utility function allows a user to determine the YUV ranges of an object which is

chosen from a pre-recorded (still) image. The image is expected to be stored in a

regular MAT-file, containing a variable ‘yuyv’ (YUYV format) or ‘rgb’ (RGB

format). The default filename is ‘testimages/testimageYUYVRGB.mat’; it can be

modified in the source code of trainStill (see line 10 of the script file ‘trainStill.m’).

Once started, trainStill displays the loaded image file as well as three smaller graphs

for the YUV statistics of the current object. As nothing has been selected yet, these

graphs appear empty. An object can be defined for colour detection using the mouse.

Left-hand click on the image, keeping the mouse button pressed. The appearing

rubber band box can be moved around until the mouse button is released. Choose an

area of the object which includes its representative colour – and as few other colour

pixels as possible. The larger the variety of colours found inside the chosen area, the

less accurate the colour detection algorithms will work. It should be pointed out,

however, that too narrow training could result in the failure of detecting an object at

all, especially under varying lighting conditions.

Following the selection of an object, trainStill displays histograms for the Y, U and V

components of all associated pixels. Thin red lines are displayed to indicate the

chosen ranges. The choice is made automatically, based on ‘the essential weight’ of

the histogram of each component (YUV). At present, trainStill uses up to two

standard deviations, centred at the mean value of the histogram. To make this

selection more acute, change the variable numberSTD to value smaller than 2. Figure

1 shows the tool trainStill with the included test image. The yellow object has been

selected; this relatively bright colour is characterised by a high Y value (brightness), a

diffuse distribution of U values and a reasonably narrow spread of V values.

Qualifying pixels have been shaded black and white.

Figure 1: trainStill in action

The YUV thresholds are displayed in the MATLAB command window. In this case,

trainStill suggests the following ranges:

(Ymin:Ymax, Umin:Umax, Vmin:Vmax)

(228:234, 12:28, 127:135)

To validate the chosen range, the m-file script ‘test’ can be run. This m-file calls upon

the colour detection algorithms, which have been made accessible to the MATLAB

environment in form of a dynamically loaded library (DLL): imgProc.dll. The DLL

expects the colours ranges to be found in the colour definition file testcolors.txt. Copy

and past the above line to the first entry of the Thresholds section in testcolors.txt and

run ‘test.m’. Your colour definition file should resemble the following lines:

[Colors]

(255, 255, 0) 0.95 0 yellow

[Thresholds]

(228:234, 12:28, 127:135)

Run test by entering at the command line:

test('testimages/testimageYUYVrgb.mat',[1 2 3])

This tells test to load the image file testimages/testimageYUYVrgb.mat and to scan for

the first colour of the colour definition file. Figure 2 illustrates the output of test using

the above colour scheme. The yellow object has not been detected. A possible reason

could be that the object selection was based on too few pixels.

Figure 2: Validation of the chosen range: failure

Repeat the training, this time selecting a larger variety of shades of yellow (e. g. the

bright central area as well as the less luminous fringes on the left and/or the right of

the object). This could produce modified thresholds such as the following:

(217:234, 7:35, 127:135) % modified selection

Notice that both U and V range have been expanded while the brightness (Y) remains

unaltered. With the modified colour definition file (testcolors.txt), the yellow object is

successfully detected (Figure 3).

Figure 3: Validation of chosen range: success

Try and find appropriate colour ranges for all three objects (yellow, red, blue). To

validate colour schemes with more than one colour definition enter the following

command:

test('testimages/testimageYUYVrgb.mat', [1 2 3])

This instructs the processing DLL (imgProc.dll) to scan for the colour definitions with

colour IDs 0, 1 and 2 (the DLL uses indices starting from ‘0’ rather than ‘1’). Figure 4

shows the result.

Figure 4: Successful detection of all three objects

trainCamera

The utility trainCamera allows a user to work from a life image stream rather than a

previously recorded still image. The program first checks if the machine it is running

from features a camera and the corresponding framegrabber card. Should this check

return negative, a pre-recorded AVI movie clip is used instead. The default filename

is testmovies/test_short.avi (see line 17 of the script file ‘trainCamera.m’); this name

can be modified to any suitable AVI movie file, e. g. the robot test movie

test_robot_LQ.avi (low quality) or test_robot_HQ.avi (high quality). Both can be

found in the folder testmovies.

The use of trainCamera is essentially identical to trainStill. The only difference is that

the user first has to select an appropriate input frame from the stream of live images

captured by the framegrabber card, or from the playing AVI movie. A frame can be

frozen through clicking on the push button ‘Freeze’. The following steps of object

selection and range detection are the same as before. Figures 5 and 6 show the utility

trainCamera in action.

Figure 5: Utility trainCamera in action: click ‘Freeze’ to select a frame

Figure 6: Utility trainCamera in action: selected area shaded in black and white

The corresponding colour range is displayed in the MATLAB command window.

(Ymin:Ymax, Umin:Umax, Vmin:Vmax)

(178:210, 97:97, 142:144)

To validate this colour scheme the captured frame has to be stored in a regular MAT

file. The following few commands accomplish this:

rgb = uint8(CAPmov(15).cdata);
save testimages/testAVIframe15 rgb
test('testimages/testAVIframe15.mat', 1)
axis ij

First, the RGB data values of frame 15 of the currently loaded AVI movie (variable:

CAPmov) are copied to a variable ‘rgb’ which is then stored in the MAT-file

‘testimages/testAVIframe15.mat’. Running the test script confirms the successful

detection of the selected colour scheme. For cosmetic reasons, the displayed image is

rotated by 180° (axis ij).

Note that ‘test.m’ calls the DLL imgProc.dll which currently only works using the

colour definition file with the hard-coded file name testcolors.txt. Prior to running test

the user thus has to ensure that the above colour range is copied to the Thresholds

section of testcolor.txt.

Figure 7: Validation of the selected range

Remark:

The U range of the above colour range is ’97:97’. This effectively instructs the vision

recognition algorithms to limit their search the pixels with a U-value of 97. To make

the object detection more robust under varying lighting conditions, this range should

be widened. This can be done manually, or by using a larger area in the object

selection of trainCamera.

Frank Wörnle, April 2003.

