

TIS Vision Tools

A simple MATLAB interface to the

”The Imaging Source (TIS)”

FireWire cameras (DFK 31F03)

Select object to be tracked...

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

 F. Wörnle, Aprit 2005

TIS Vision Tools A simple MATLAB interface to FireWire cameras

 1

TIS Vision Tools A simple MATLAB interface to FireWire cameras

 2

Contents

1 Introduction 4

2 The TIS Vision Interface 6

2.1 Supported video formats 6

2.2 Image capture commands 7

2.3 Image processing commands 11

2.4 Selecting colour ranges 15

2.5 Simulink interface 15

--

Appendix 18

Appendix A The MATLAB script yuv2rgb 20

Appendix B The MATLAB script yuyv2rgb 22

Appendix C A test program for capProc 24

TIS Vision Tools A simple MATLAB interface to FireWire cameras

 3

TIS Vision Tools A simple MATLAB interface to FireWire cameras

 4

1. Introduction

This document describes a small collection of drivers which have been written
to provide direct access from within MATLAB to FireWire cameras. The
commands of the toolbox make use of MATLAB’s standard C-Mex interface
and/or Simulink S-Functions. Live images can thus be processed directly from
the MATLAB command prompt as well as from within Simulink block
diagrams.

A few of the provided drivers include rudimentary image processing
capabilities. It is possible to classify image contents according to a
programmable colour range and/or object size criteria. Furthermore, the
algorithm readily returns the coordinates of the centroid of any detected
object. This feature is particularly useful in machine vision based robotics
applications including the automatic tracking of coloured objects (e. g.
RoboCup, etc.).

The drivers of this toolbox have been written for and work best with “The
Imaging Source” (TIS) cameras (www.theimagingsource.com). Access to the
low-level Windows Driver Model (WDM) stream class drivers is commonly
provided through the DirectX/DirectShow framework. The Imaging Source
cameras come with a convenient Software Development Kit (SDK) which
reduces the complexity of DirectX/DirectShow. The standard version of this
SDK (IC Imaging Control) works with any TIS product (camera, frame grabber
card, etc.). To use the toolbox with other WDM stream class compatible
cameras (FireWire, USB, etc.), the professional version of the SDK needs to
be purchased and the drivers should be re-built. At the writing of this
document (April 2005) a single runtime license for IC Imaging Control
Professional cost around $70 (US).

The classification algorithms are those of the Color Machine Vision project
(CMVision), a project conducted by the CORAL group at the Carnegie Mellon
School of Computer Science. This software has been published under the
GNU General Public License (GPL) and can be obtained from the
corresponding project page at http://www-2.cs.cmu.edu/~jbruce/cmvision/.
CMVision provides “a simple, robust vision system suitable for real time
robotics applications” by means of “global low level colour vision at video
rates without the use of special purpose hardware”.

To install and use the TIS Vision Tools toolbox, extract the contents of the zip
to a local folder. The _bin folder of the distribution should be added to the
MATLAB path variable as well as to the Windows path variable. On Windows
XT, the latter can be done by right-hand clicking on My Computer and
choosing Properties. Select the Advanced tab and click on Environment
Variables. The path can now be added to the PATH variable.

The TIS Vision Tools are distributed as ‘Free Software’ under the terms of the
GNU General Public License Agreement. Users are therefore given the right
to copy, re-distribute and/or modify the source code to suit their needs.

TIS Vision Tools A simple MATLAB interface to FireWire cameras

 5

Comments and bug reports are always welcome. Please direct your feedback
to the following address:

Frank Wornle (frank.wornle@adelaide.edu.au)
The University of Adelaide
School of Mechanical Engineering

11 April 2005

TIS Vision Tools A simple MATLAB interface to FireWire cameras

 6

2. The TIS Vision Tools interface

2.1 Supported video format

The Imaging Source FireWire cameras can be configured to produce digitized
image information in a multitude of formats. Two popular video standards are
currently supported by Vision Tools:

 - RGB24 Each pixel is represented by a colour triplet of three con-
 secutive bytes: Red, Green, Blue.

 - YUV Each pixel is represented by a luminance byte (Y), and
 a corresponding chrominance byte (CR/CB); altering red
 chrominance bytes (U) and blue chrominance bytes (V)
 are transmitted in between any two luminance bytes. A
 pair of adjacent pixels are assigned the same colour,
 thus reducing the bandwidth of the image data. A set of
 4 transmitted bytes therefore contains the entire
 information required to display 2 pixels. Notice that this
 is only 2/3 of the bandwidth required for RGB24. The
 reduced bandwidth might be of advantage when an
 application needs real-time image processing.

The camera used during the development of this toolbox is a DFK 31F03.
This camera can be set up to work with a resolution of 640 x 320 or 1024 x
768. The maximum frame rate is 15 fps.

TIS Vision Tools A simple MATLAB interface to FireWire cameras

 7

2.2 Image capture commands

The following list describes the commands which can be used from the
MATLAB command line to acquire visual information and return it to the
workspace in form of a cell array.

2.2.1 capImage(0)

This command acquires a single frame of the camera. The call-up parameter
defines the video format to be used (0 = RGB); the command returns an n x n
x 3 cell array containing the corresponding Red, Green and Blue values.

The following line can be used to display an RGB image:

>> image(capImage(0));

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

640 x 480 pixel RGB image

A small requester is presented during the initialization of the camera. Upon
selection of a camera (here: The Imaging Source DFK 31F03), a number of
parameters can be configured. These include image size (640 x 480 or 1024 x

TIS Vision Tools A simple MATLAB interface to FireWire cameras

 8

768) and frame rate (up to 15 fps on the DFK 31F03). In addition to this, the
image can be flipped horizontally and/or vertically.

Choosing camera, image size and frame rate

The following lines cause MATLAB to continuously acquire RGB images and
display them on screen (the program stops after 100 frames). Upon
completion of 100 cycles, the grabber is switched off by calling the driver with
call-up parameter ‘-1’.

% start grabber

for(i=1:100)

 image(capImage(0));

 drawnow

end

% stop grabber
capImage(-1);

TIS Vision Tools A simple MATLAB interface to FireWire cameras

 9

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

RGB image – continuous acquisition (1024 x 768 pixels)

2.2.3 capImage(-1)

A call to capImage with call-up parameter ‘-1’ stops the data acquisition and
frees the associated grabber object. The next call to capImage will re-initialize
the device. This has to be done when switching from low resolution mode
(640 x 480) to high resolution mode (1024 x 768).

2.2.4 capImage(1)

Captures YUV images and returns them to MATLAB. The transmission of a
YUV image requires less bandwidth than that of a regular RGB image (YUV
only uses 2 bytes to represent each pixel). For more details about YUV see
www.fourcc.org (YUV4:2:2 or UYVY). The function returns an n x n x 3 cell
array: The first entry is the luminance information, the second entry contains
the blue chrominance and the last entry is the red chrominance (Y x U x V).

YUV image data can be converted to RGB using the m-file script yuv2rgb (cf.
appendix A).

TIS Vision Tools A simple MATLAB interface to FireWire cameras

 10

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

Picture of the tip of a pen - YUV standard

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

The same picture after conversion to RGB

TIS Vision Tools A simple MATLAB interface to FireWire cameras

 11

2.3 Image processing commands

The commands in this section combine image acquisition with the data
classification algorithms of the CMVision project (see: The CORAL group,
http://www-2.cs.cmu.edu/~jbruce/cmvision/).

2.3.1 capProc()

This command can be used to detect and track objects. A number of
CMVision algorithms are used to classify the acquired image data. Clusters
with the requested size and/or colour qualities are being detected and made
available to MATLAB in form of a cluster information structure. This structure
include among other things the position and size of a rectangular box around
the cluster, as well as the coordinates of its centroid. The location of the
centroid can directly be used in tracking applications.

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

Detecting 3 different colours - Cluster boundary box and cluster centroid

The above example demonstrates the situation for a relatively selective colour
range (only a few shades of each detected colour are accepted). A boundary
box has been plotted to reveal the size of the detected cluster. The small star
denotes the location of the centroid.

TIS Vision Tools A simple MATLAB interface to FireWire cameras

 12

To learn about the admissible colour ranges, the command reads the file
‘color.txt’. This text file contains colour attributes for up to 32 different objects
to be detected. The general structure of ‘color.txt’ is shown below:

[Colors]

(255,128, 0) 0.5000 2 Ball

(255,255, 0) 0.6000 3 Yellow_Team

(0, 0,255) 0.6000 3 Blue_Team

(255,255,255) 0.0000 0 White
(255, 0,255) 0.0000 0 Marker_Pink

(160, 0,160) 0.0000 0 Marker_Purple

(0,160, 0) 0.0000 0 Marker_Green

(0, 0, 0) 0.0000 0 C08

(0, 0, 0) 0.0000 0 C09

(0, 0, 0) 0.0000 0 C10

(0, 0, 0) 0.0000 0 C11

(0, 0, 0) 0.0000 0 C12

(0, 0, 0) 0.0000 0 C13

(0, 0, 0) 0.0000 0 C14

(0, 0, 0) 0.0000 0 C15

(0, 0, 0) 0.0000 0 C16

(255,128, 0) 0.0000 0 Ball_2
(255,255, 0) 0.0000 0 Yellow_Team_2

(0, 0,255) 0.0000 0 Blue_Team_2
(255,255,255) 0.0000 0 White_2
(255, 0,255) 0.0000 0 Marker_Pink_2

(160, 0,160) 0.0000 0 Marker_Purple_2
(0,160, 0) 0.0000 0 Marker_Green_2

[Thresholds]

(7:175, 50:150,160:200)
(47:120, 5:80, 130:200)

(76:112,110:190, 67:128)
(130:255, 81:131,125:178)
(50:181,102:135,190:222)

(103: 96,118:140,144:166)
(67:134, 96:129, 85:124)

(0: 0, 0: 0, 0: 0)

(0: 0, 0: 0, 0: 0)
(0: 0, 0: 0, 0: 0)

(0: 0, 0: 0, 0: 0)

(0: 0, 0: 0, 0: 0)

(0: 0, 0: 0, 0: 0)
(0: 0, 0: 0, 0: 0)
(0: 0, 0: 0, 0: 0)

(0: 0, 0: 0, 0: 0)
(0: 0, 0: 0, 0: 0)

(86:221, 35: 79,102:150)

(0: 0, 0: 0, 0: 0)
(0: 0, 0: 0, 0: 0)

(0: 0, 0: 0, 0: 0)
(0: 0, 0: 0, 0: 0)

(0: 0, 0: 0, 0: 0)

TIS Vision Tools A simple MATLAB interface to FireWire cameras

 13

The section [Colors] includes four columns:

(1) A user defined RGB colour triplet which can be used to visualize the bits

of a detected cluster. This can be useful to validate the settings of a
particular colour detection range. An example with four different detected
regions is shown below.

50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

Setting all pixels of a detected cluster to its default colour

(2) The merge density parameter is assigned a value between 0 and 1. It

defines a colour density threshold beyond which two individual clusters
are being merged into one bigger cluster. This parameter therefore
allows control of the granularity of detected clusters within an acquired
image.

(3) Colour ID; this parameter can be used to identify clusters of a particular

colour quality.

(4) Colour name; this optional name can be used to link a detected object to

a clear text identifier.

The section [Thresholds] contains the RGB colour ranges which are used to
detect a particular cluster.

For further details about the CMVision algorithms, please refer to the
CMVision manuals (http://www-2.cs.cmu.edu/~jbruce/cmvision/).

capProc can be invoked with one or two call-up parameters and one or two
return parameters:

TIS Vision Tools A simple MATLAB interface to FireWire cameras

 14

The first call-up parameter should always be set to 1 to make the camera
acquire YUV images (required by the CMVision algorithms). The optional 2nd
parameter is a vector of colour IDs to be detected. When omitted, the
command only detects objects defined by the first entry in ‘color.txt’.

capProc always returns the result of the image processing step (clusters,
centroids, colours, names, ...). Additionally, the corresponding image data can
be returned in an optional 2nd output parameter (RGB). An example of how to
use capProc() can be found in appendix C.

2.3.2 capClassify()

The command capClassify can be used to find appropriate settings for a
particular parameter in ‘color.txt’. All pixels of a detected cluster are set to
their default colour (1st column in section [Colors]).

50 100 150 200

20

40

60

80

100

120

140

160

180

200

220

Finding the correct settings of colour range and density threshold

2.3.3 imgProc()

The command imgProc can be used to test the validity of a chosen colour
definition. This command takes a previously stored RGB image as input as
well as an optional vector of colour IDs. At present, imgProc expects the
colour definition to be stored in a file called ‘testcolors.txt’. The command
returns a list of all detected regions together with their size, co-ordinates of
the centroid, etc. See the test program in folder /imgProc for further details.

TIS Vision Tools A simple MATLAB interface to FireWire cameras

 15

2.4 Selecting colour ranges

Object tracking by colour detection relies on the correct definition of
appropriate RGB colour ranges. Too wide a range will lead to an unwanted
detection of objects with similar colour qualities; on the other hand, too narrow
ranges might cause the algorithm to return without having detected anything.

To determine appropriate RGB ranges, a number of small MATLAB m-files
have been provided. These ‘training’ programs allow a user to select an object
to be tracked from either a still image (trainStill.m) or a live stream of images
(trainCamera.m). Both programs return the colour characteristics of the
selected object. The thus established values (ranges of Y, U, V) can directly
be copied to a colour definition file.

Additional information on the issue of colour training can be found in the
document ‘Train_UserManual.doc’ which has been included in the present
distribution of the toolbox.

Training the camera to ‘see’ yellow…

2.5 Simulink interface

Object tracking can also be done in Simulink. A suitable SFunction block has
been designed and can be found in folder /SFcapProc. This block analyses
the current image of the camera and returns the coordinates (x, y) of the first
detected object of each specified colour. The block mask allows specification
of the colour definition file. The (optional) display of image information can be
enabled using the ‘display’ check box.

TIS Vision Tools A simple MATLAB interface to FireWire cameras

 16

Block parameters: colour definition file and (optional) display mode

A Simulink based vision processing system

The display of images can be switched to ‘classify’ mode. This reveals which
objects the camera currently associates with the provided colour definitions.
Each detected object is coloured in the associated display colour (see colour
definition file, section 2.3.1). A boundary box is drawn around each selected
object and the centroid is displayed.

TIS Vision Tools A simple MATLAB interface to FireWire cameras

 17

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

Classify mode: Detected objects are coloured, undetected objects are black

100 200 300 400 500 600

50

100

150

200

250

300

350

400

450

Regular display mode: Detected objects have centroids and boundary boxes

TIS Vision Tools A simple MATLAB interface to FireWire cameras

 18

Appendix

TIS Vision Tools A simple MATLAB interface to FireWire cameras

 19

TIS Vision Tools A simple MATLAB interface to FireWire cameras

 20

Appendix A – The MATLAB script yuv2rgb

% converts rgb data to yuv (FW-04-03)

function dst = rgb2yuv(src)

% ensure this runs with rgb images as well as rgb triples

if(length(size(src)) > 2)

 % rgb image ([r] [g] [b])

 r = double(src(:,:,1));

 g = double(src(:,:,2));

 b = double(src(:,:,3));

elseif(length(src) == 3)

 % rgb triplet ([r, g, b])

 r = double(src(1));

 g = double(src(2));

 b = double(src(3));

else

 % unknown input format

 error('rgb2yuv: unknown input format');

end

% convert...
y = floor(0.3*r + 0.5881*g + 0.1118*b);

u = floor(-0.15*r - 0.2941*g + 0.3882*b + 128);

v = floor(0.35*r - 0.2941*g - 0.0559*b + 128);

% ensure valid range for uint8 values

y(y > 255) = 255;

y(y < 0) = 0;

u(u > 255) = 255;

u(u < 0) = 0;

v(v > 255) = 255;

v(v < 0) = 0;

% generate output

if(length(size(src)) > 2)

 % yuv image ([y] [u] [v])

 dst(:,:,1) = uint8(y);

 dst(:,:,2) = uint8(u);

 dst(:,:,3) = uint8(v);

else

 % yuv triplet ([y, u, v])

 dst = uint8([y, u, v]);

end

TIS Vision Tools A simple MATLAB interface to FireWire cameras

 21

Appendix B – The MATLAB script yuyv2rgb

% converts yuv data to rgb (FW-04-03)

function dst = yuv2rgb(src)

% ensure this runs with yuv images as well as yuv triples

if(length(size(src)) > 2)

 % yuv image ([y] [u] [v])

 y = double(src(:,:,1));

 u = double(src(:,:,2));

 v = double(src(:,:,3));

elseif(length(src) == 3)

 % yuv triplet ([y, u, v])

 y = double(src(1));

 u = double(src(2));

 v = double(src(3));

else

 % unknown input format

 error('yuv2rgb: unknown input format');

end

% convert...

u = 2*u - 256;

v = 2*v - 256;

r = y + v;

g = floor(y - 0.51*v - 0.19*u);

b = y + u;

% ensure valid range for uint8 values

r(r > 255) = 255;

r(r < 0) = 0;

g(g > 255) = 255;

g(g < 0) = 0;

b(b > 255) = 255;

b(b < 0) = 0;

% generate output

if(length(size(src)) > 2)

 % rgb image ([r] [g] [b])

 dst(:,:,1) = uint8(r);

 dst(:,:,2) = uint8(g);

 dst(:,:,3) = uint8(b);

else

 % rgb triplet ([r, g, b])

 dst = uint8([r, g, b]);

end

TIS Vision Tools A simple MATLAB interface to FireWire cameras

 22

Appendix C – A test program for capProcs

% test program to continuously capture pictures from the camera

function test(varargin)

% run variable is global -> stop button callback can reach this

global run;

run = 1;

% check inputs of function 'test'

if(isempty(varargin))

 scan4col = [];

elseif(nargin == 1) % one input argument -> colour vector

 scan4col = varargin{1};

 if(scan4col == -1)

 % just stopping grabber...

 kk = capProc(-1);

 run = 0;

 end

end

if(run)

 % open figure window

 figure

 title('Click STOP to stop data acquisition...');

 % push button to stop data acquisition...

 stop_h = uicontrol('Style', 'pushbutton', 'String', 'STOP',...

 'Position', [20 200 50 50], 'Callback', 'zeroGlobalRun');

 % endless loop...

 while(run)

 [out, R] = capProc(1, scan4col);

 image(R);

 axis image xy;

 if(~isempty(out)) % no regions detected

 hold on;

 nCol = length(out); % number of colours with valid regions

 for(j = 1:nCol)

 kk = out(j).nRegions;

 col = out(j).Colour;

 while(kk)

 cx = out(j).Regions(1,kk); % centroid

 cy = out(j).Regions(2,kk);

 x = out(j).Regions(3,kk); % boundary box

 y = out(j).Regions(4,kk);

 w = out(j).Regions(5,kk);

 h = out(j).Regions(6,kk);

 patch([x x+w x+w x],[y y y+h y+h],col);

 plot(cx,cy,'w*');
 kk = kk - 1;

 end

 end

 hold off

 end

 drawnow

 end

TIS Vision Tools A simple MATLAB interface to FireWire cameras

 23

 % delete 'freeze' button

 delete(stop_h);

 % stop grabber (recursive calle)

 test(-1);

end

