

RTMC9S12-Target

A Simulink target for real-time control

using Freescale MC9S12DP256B/C

microcontrollers

Compiler suite: Metrowerks CodeWarrior

Manual: V 1.12 F. Wörnle, May 2005

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 1

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 2

Contents

1 Introduction and Background 3
1.1 Introduction 3
1.2 Background 5

2 The Simulink real-time target ‘rtm9S12-Target’ 8
2.1 Installation 8
2.1.1 Configuring rtmc9S12-Target 8
2.1.2 Increasing the CodeWarrior allowance for heap space 9
2.2 The rtm9S12-Target block set 11
2.2.1 User communication blocks 12
2.2.2 FreePort communication blocks 13
2.2.3 A/D Converter unit (ADC) 15
2.2.4 Pulse-Width Modulation unit (PWM) 15
2.2.5 Servo Motor Pulse-Width Modulation unit (PWM) 16
2.2.6 Digital input 17
2.2.7 Digital output 18
2.2.8 D/A converter unit (DAC) 19
2.3 Code generation options 19

3 Building a simple model – A mini tutorial 26

4 The example models 40
4.1 AD_9S12.mdl 40
4.2 ADC_DAC.mdl 40
4.3 DigINPort.mdl 41
4.4 DigOUTPort.mdl 42
4.5 Pulse-Width Modulation (PWM) 42
4.6 Pulse-Width Modulation (PWM) with user communication 43
4.7 User communication 45
4.7.1 Download of user telegrams 46
4.7.2 Upload of user telegrams 47
4.7.3 Upload and download of user telegrams 49
4.7.4 Heavy download of user telegrams 50
4.8 FreePort communications 51
4.8.1 Simple download of data to the target 51
4.8.2 Simple upload of data from the target 53
4.8.3 Simultaneous upload and download of data between host and target 54
4.8.4 Download of unformatted data to the target 55
4.8.5 Unpload and download of data via both ports SCI0 and SCI1 56
4.9 Toggle a pin of PORTB 58
4.9.1 Toggle a pin of PORTB in External Mode 58
4.9.2 Toggle a pin of PORTB in standalone mode 58
4.10 Miscellaneous sample models 59
4.10.1 The F14 simulation 59
4.10.2 A rudimentary robot control 59
4.10.3 Band-limited white noise generator 61
4.10.4 Generation of a chirp signal (frequency wobbling) 61

Appendix 62
Appendix A – The Wytec Dragon-12 development board 64
Appendix B – The Wytec MiniDragon+ development board 66
Appendix C – Things to do… 68

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 3

1 Introduction and Background

1.1 Introduction

rtm9S12-Target is a MATLAB/Simulink toolbox for real-time control applications using
Freescale MC9S12DP256B/C microcontrollers. The toolbox builds real-time executable
code from arbitrary Simulink models (block diagrams). In addition to all normal
Simulink blocks, a number of special blocks are provided, giving high-level access to
all hardware units of the microcontroller. The controller can thus be programmed
without the need for low-level coding in C/C++ or assembler and the usually inevitable
testing and debugging of these programs.

In its current version, rtmc9S12-Target provides access to all 16 channels of the two
A/D converter units (ATD0, ATD1). There are blocks for reading from and writing to the
digital I/O lines, the 4/8 channels of the PWM unit are available (8-bit operation / 16-bit
operation) and there are blocks for serially loaded D/A converters, which can be
connected to the IIC bus of the chip (e.g. Analog Devices AD5311). Additional
hardware units can easily be integrated using user-supplied s-functions or Target
Language Code script files (tlc).

The target platform (microcontroller) can communicate with a host machine (personal
computer, PC) through a serial connection (RS-232, null-modem). This allows for real-
time monitoring of process data as well as on-the-fly downloading of control
parameters. The host-to-target communication has been based on Simulink’s External
Mode interface, thereby fully integrating rtmc9S12-Target into the Simulink
environment. This makes it possible to simulate a model on the host (normal mode)
before building real-time executable code to be run on the target platform (external
mode). No changes have to be made to the block diagram when switching from normal
mode to external mode.

A useful extension of the External Mode interface has been devised to provide a set of
upload and download channels for the (optional) exchange of user data telegrams
between host and target. This feature allows the microcontroller to access resources
which are available on the host, e.g. PC based data-acquisition cards, vision systems,
data bases, etc. Using the host as a simple information server, the microcontroller is
given access to an extremely wide range of applications.

rtmc9S12-Target is the port of a toolbox for Infineon C167 microcontrollers
(www.mecheng.adelaide.edu.au/robotics/WWW_Devs/c167Web/RTC167-Target.htm).
This toolbox has been developed on a Phytec single-board computer (phyCORE-167,
www.phytec.com), a small unit with an Infineon C167CR-LM micrcontroller, 256 kBytes
of external Flash ROM and 256 kBytes of external RAM. The relatively large RAM
allow for larger communications buffers as possible on the Freescale MC9S12DP256
(only 12 kByte of internal RAM are available). This contributes to the overall
robustness of the host-target communication system. A second advantageous feature
of the C167 over the 9S12 is a vastly superior timing unit (5 independently
programmable timers) and a priority based interrupt system (64 priority levels – there
are none on the 9S12). Nevertheless, rtmc9S12-Target is performing reasonably well
in most cases. A large number of sample programs have been included to facilitate
assist new users with the first few experiments.

At present, rtmc9S12-Target can be run without any modifications on Wytec
MiniDragon+ boards as well as Wytec Dragon-12 boards (www.wytec.com). The
executable code is generated from a regular MATLAB/Simulink model using

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 4

Metowerks’ CodeWarrior (V3.0 or later, www.metrowerks.com). Adaptations to other
9S12 based development boards should be straight forward.

The author believes in the usefulness of free software. rtmc9S12-Target is thus
released under the terms of the GNU Public License Agreement (GPL). The spirit of
free software incorporates the users' freedom to run, copy, distribute, study, change
and improve the software. Commercial developments based on rtmc9S12-Target are
permitted within the limits of the GPL. For further details please visit the GNU website
or refer to: www.gnu.org/philosophy/free-sw.html.

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 5

1.2 Background

The idea for the development of an easy-to-use real-time target for a microcontroller
was born in the course of a number of Control Engineering laboratory sessions, held at
Glasgow Caledonian University between 1999 and 2001. Experience showed that
students often find it difficult to establish strong links between the theoretic concepts
taught in class and practical real world applications. The mentioned laboratory
sessions were aimed at narrowing the gap between the design stage and the
development of an actual product. Working in small groups of 2 to 4 students, the
participants were asked to develop a microcontroller based mobile robot which could
follow a reflecting track on the ground. Each group was handed a simple frame for a
rear wheel driven robot, including a pair of H-bridge motor driver circuits and a module
with two light-sensitive photodiodes (Figure 1).

Figure 1 Rear-wheel driven mobile robot (prototype)

The students generally liked this exercise because of its integrative nature, combining
many aspects from a variety of areas: control engineering, programming, electronics,
communications and project management. However, it soon became apparent that the
5 laboratory sessions (2h per session) were insufficient to bring the exercise to a
successful and satisfying conclusion. Judging the situation from a Control Engineering
point of view, too much time was “wasted” with tedious programming tasks and the
inevitable debugging of the developed programs. To remedy this problem the MATLAB
toolbox RTC167-Target was written, giving high-level access to all essential features of
the controller using a customised set of Simulink S-Function blocks. This completely
eliminated the process of having to convert a control algorithm – often given in form of

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 6

a block diagram – into a C-language program for the microcontroller. Using the
toolbox, no time is wasted with learning a new software development environment
(compiler, debugger) or microcontroller specific details such as hardware registers,
memory models, startup files, etc. By reducing this development time, the focus of the
exercise can be shifted from low-level development to system-level control
engineering. This opens the door to realistic real-world control applications, e.g. robot
control using machine vision, process control experiments, intelligent system of
multiple autonomous mobile robots, etc.

Like all other Real-Time Workshop (RTW) targets, rtmc9S12-Target generates code
from a Simulink model (block diagram). The build process initially turns the block
diagram into a series of ANSI-C source code files. These files are then cross-compiled
and linked to a single MC9S12 executable. Once downloaded into the FLASH-ROM of
the microcontroller, the code can be controlled using the graphical user interface of
Simulink. The build process is fully automated and can be customised through the
Real-Time Workshop options panel. The generation of timing signals and other status
information can be configured. The options panel also allows the setting of the serial
communication parameters (host COM port, baudrate).

The present version of rtmc9S12-Target makes use of Metrowerks’ CodeWarrior
Integrated Development Environment (www.metrowerks.com). The full version of this
compiler is required to build the executables. Inexpensive licenses are available to
educational institutions. rtmc9S12-Target has been developed and tested on MATLAB
version 6.5.1 (R13.1).

The remainder of this document presents a detailed description of the installation and
use of rtmc9S12-Target. The hardware used for this development was a Wytec
Dragon-12 development board (www.wytec.com). Appendix A summarises the key
features of this rapid development board. A more compact version of the Dragon-12 is
the MiniDragon+ development board (also Wytec). The toolbox has successfully been
used on the MiniDragon+ board. Appendix B summarises the key features of the
MiniDragon+ board. A number of currently known problems and recommendations for
future extensions are listed in Appendix C.

It is hoped that this contribution will be helpful to many users in education, science and
research. Any comments and feedback on possible flaws within the code of rtmc9S12-
Target are very much appreciated and should be directed to:

Frank Wornle (frank.wornle@mecheng.adelaide.edu.au)

The University of Adelaide
School of Mechanical Engineering

13/04/05

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 7

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 8

2 The Simulink real-time target ‘rtmc9S12-Target’

2.1 Installation

2.1.1 Configuring rtmc9S12-Target

The installation of rtmc9S12-Target is simple: Extract the contents of the archive file
rtmc9S12_CW_R13.zip to an empty folder of your choice and follow the instructions
given below. In this document, the installation folder is referred to as
<rtmc9S12_TARGET_ROOT>.

Following the successful extraction of the archive file (rtmc9S12_CW_R13.zip), please
launch MATLAB and run the m-file ‘setup.m’ which can be found in the installation
folder <rtmc9S12_TARGET_ROOT>. This GUI driven MATLAB script ensures that all
installation specific path information is suitably adjusted (Figure 2-1). This includes the
search path variables to the compiler installation folder (Codewarrior) as well as the
work directory in which the rtmc9S12-Target models can be found. Throughout the
remainder of the present document, this latter folder will be referred to as
<WORK_ROOT>.

Figure 2-1 rtmc9S12-Target Configuration tool

The path information can directly be entered in the two textboxes. Alternatively, a
folder browser can be displayed by clicking the corresponding pushbuttons (‘Compiler’,
or ‘Work folder’). Notice that only the names of folders are displayed; the names of all
other files are suppressed.

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 9

Figure 2-2 Folder browser

The setup script adds the following two folders to the MATLAB search path variable:

<rtmc9S12_TARGET_ROOT>\bin
<rtmc9S12_TARGET_ROOT>\mc

Finally, the setup script copies a number of customized system files to the required
folders. The m-file make_mc9S12.m is copied to <MATLAB_ROOT>\toolbox\rtw\rtw.
Real-Time Workshop calls upon this file during the build process of a model;
make_mc9S12.m is a slightly modified version of the original MathWorks’ script file
make_rtw.m.

2.1.2 Increasing the CodeWarrior allowance for heap space

The final step of the installation process is to recompile the CodeWarrior library files.
The default installation of CodeWarrior has libraries which allow for up to 2 kByte of
heap memory space. This is not sufficient when using this toolbox, which uses
dynamic memory allocation (malloc, calloc) to create and manage the communication
buffers of the external mode interface. Future releases may make use of static
memory allocation, but for now it is necessary to increase the heap space from 2 kByte
to 7 kBytes.

Find the HC12 library folder of the CodeWarrior installation (this is commonly:
C:\Program Files\Metrowerks\CodeWarrior CW12_V3.0\lib\HC12c). In the /include
sub-folder, find and open the file libdefs.h (see Figure 2-3). Scroll down about 3/4 (line
165 in my installation) to locate the following pre-processor macro definition:

#define LIBDEF_HEAPSIZE 2000

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 10

Change this value to 7000 and save the file. Go back to the HC12c folder (up one level
from /include).

Figure 2-3 Recompiling the CodeWarrior library files for increased heap space

Open the Metrowerks CodeWarrior project file libhc12.mcp and recompile (click the
‘make’ button, see the small circle in Figure 2-4). Exit from CodeWarrior. The toolbox
should now be fully operational, ready to be used.

Figure 2-4 Recompiling the CodeWarrior library files for increased heap space

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 11

2.2 The rtmc9S12-Target block set

Upon successful installation of rtmc9S12-Target, the Simulink library browser should
include a new entry called Real-time mc9S12 Toolbox. rtmc9S12-Target contributes 7
new blocks (Figure 2-5): ADC Input (A/D converter), Digital input, Digital output, D/A
converter, Pulse-Width Modulation (PWM), Receive user data, Send user data,
FreePortComms_RX and FreePortComms_TX.

Figure 2-5 The blocks of rtmc9S12-Target

Application examples of all blocks of the toolbox can be found in the working directory
<WORK_ROOT>. Wherever a system includes a user communication block (Receive
user data or Send user data), the system comprises of a target model

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 12

(<example_name>.mdl) as well as a host model (<example_name>_PC.mdl). See
chapter 4 for details about the provided examples.

2.2.1 User communication blocks

An optional user interface between host and target can be implemented with the two
blocks Receive user data and Send user data. These blocks allow the communication
between a target model (running on the microcontroller) and a separate host model
(running on the PC). The user communication blocks can be used in both the host
model as well as the target model. An example of a typical user communication
between a host and a target model can be found in chapter 3.

It should be mentioned that the user communication system has been integrated into
the External Mode communication protocol. User communication block will therefore
only work when External Mode interface is enabled (this is usually the case). The user
communication system is completely transparent to Simulink: User telegrams are
‘smuggled’ into the regular data exchange between host and target (defined rather
rigidly by the Simulink External Mode interface); the receiving communication partner
checks for and removes any incoming user telegrams prior to passing ‘regular Simulink
data’ on to the communication routines of the External Mode interface. The advantage
of this approach is that the second Serial Communications Interface (SCI) of the
MC9S12 remains unused and can therefore be used otherwise. A disadvantage is that
user telegrams reduce the bandwidth which is available for the exchange of log data
and/or parameter records between host and target.

The parameters of the user communication blocks are: Sample time, Channel number,
Number of elements and Data type (Figure 2-6).

Figure 2-6 Parameters of the block Receive user data

The sample time specifies the rate at which the block is updated by the real-time
kernel of the target, respectively, by Simulink on the host. Short sample times reduce

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 13

the bandwidth which is available for the upload of log data (monitoring of process data)
and for other user data channels.

The channel number can range from 0 to 9. It is used to identify corresponding blocks
on the host and on the target. To increase the currently available number of 10 user
channels the source code macro MAX_UCOM_CHANNELS should be redefined and
the affected code sections need to be re-compiled (mex-file ext_comm_mc9S12.dll, S-
Functions s0_userTel_rxd and s0_userTel_txd).

The parameter Number of elements defines the width of the block input (transmission),
respectively, of the block output (reception). Together with the parameter data type the
number of elements defines the size of the communication buffers. These are currently
limited to an overall size of 100 bytes.

2.2.2 FreePort communication blocks

Some applications need simple and reliable communications between several
microcontroller platforms or between a microcontroller and host based applications
other than MATLAB. The above User communications blocks (see section 2.2.1) are
not suitable in this case as they rely on the External Mode interface and therefore only
cover communications between MATLAB and the targeted microcontroller.

This problem can be avoided when using FreePort communication blocks. The latter
allows transmission/reception of short formatted messages via any of the Serial
Communication Interfaces of the 9S12 (SCI0 / SCI1) which is not used for External
Mode communications. The parameters of the FreePort communication blocks are:
Sample time, Communication port, Baudrate, Channel number, Number of elements
and Data type. A tick box allows the transmission of raw data values (Figure 2-7).

Figure 2-7 Parameters of the block FreePortComms_TX

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 14

The sample time specifies the rate at which the block is updated by the timing ISR
(target sided block) or by Simulink (host sided block). Short sample times reduce the
bandwidth which is available for the upload of log data (monitoring of process data)
and user data channels.

The channel number can range from 0 to 9. It is used to identify corresponding blocks
on the host and on the target. To increase the currently available number of 10 user
channels the source code macro MAX_FREEPORT_CHANNELS should be redefined
and the affected code sections need to be re-compiled (e.g. the S-Functions
freePortComms_rxd and freePortComms_txd).

The parameter Number of elements defines the width of the block input (transmission),
respectively, of the block output (reception). Together with the parameter data type the
number of elements defines the size of the communication buffers. These are currently
limited to an overall size of 100 bytes.

The communication port defines whether a block is used as host block (COM1 –
COM4) or as target block (SC0 and SCI1). The build process performs a check for and
corrects inadequate port settings such as the use of the same SCI port for both
External Mode communications as well as FreePort communications. At the writing of
this document, baudrates ranging from 300 bps to 115200 bps are supported.

Ticking the box labeled ‘block sends raw data’ causes the underlying S-Function to
send unformatted (raw) data telegrams. In this case, only the selected number of data
bytes (uint8) is transmitted. No additional overhead such as the channel number, the
data type byte, etc. are sent. This is useful when interfacing the microcontroller to
intelligent sensors which provide measurements and other information in form of a
stream of serial data bytes. Selecting the raw data tick box causes the block mask to
change to the reduced format shown in Figure 2-8.

Figure 2-8 Raw data mode – reduced parameter set

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 15

2.2.3 A/D Converter unit (ADC)

The A/D converter unit of the MC9S12 can be accessed using the target block ADC
Input. This block has five parameters: The ADC unit of the microcontroller (ATD0,
ATD1), the range of channels to be converted (0 – 7), the resolution of the ADC (8-bit,
10-bit), the output format (raw data, normalized to [0 ... 1], normalized to [0 ... 5]) and
the sample time at which the block is to be updated. Figure 2-9 shows the parameter
requester of the ADC Input block.

Figure 2-9 Parameters of the block ADC Input

2.2.4 Pulse-Width Modulation unit (PWM)

Pulse width modulated (PWM) signals can be generated using the Pulse-Width
Modulation block. The current version of rtmc9S12-Target offers 4 to 8 PWM
channels, depending on the resolution of each individual channel. The unit can be
configured for up to 4 16-bit PWM channels or up to 8 8-bit channels. Block inputs can
be signed numbers. The sign information is removed and presented on a
programmable sign pin. The block mask allows the following parameters to be set
(Figure 2-10): Sample time, Resolution, PWM period, Pulse pin, Sign port, Sign pin,
Saturation input level and an optional monitoring output.

The sample time defines the rate at which the block is updated. The PWM period is the
period of the created PWM signal. This parameter is limited by the maximum period of
the PWM timer (179 seconds).

Pulse pin, Sign port and Sign pin allow the output pins to be chosen on which display
the PWM signal should be displayed. The pulse port is fixed (PTP). The sign bit is
‘high’ (+ 5 V) for negative signals and ‘low’ (0 V) for positive inputs.

The Saturation input level defines the magnitude of the block input signal beyond
which the PWM output signal has a duty cycle of 100%.

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 16

Figure 2-10 Parameters of the block Pulse width modulation

An optional block output can be displayed by ticking the Signal monitoring check box.
This allows the current state of the PWM output signal to be uploaded to the host.
Please note that this feature is only useful when the block sample time is much shorter
than the PWM period.

2.2.5 Servo Motor Pulse-Width Modulation unit (PWM)

Servo motors are driven by Pulse-Width Modulated (PWM) signals with a very short
duty cycle (typically 2% - 12%). These signals can be generated using the Servo Motor
Pulse-Width Modulation block. The current version of rtmc9S12-Target offers 4 to 8
PWM channels, depending on the resolution of each individual channel. The unit can
be configured for up to 4 16-bit PWM channels or up to 8 8-bit channels. Block inputs
need to be unsigned numbers. The block mask allows the following parameters to be
set (Figure 2-11): Sample time, Resolution, PWM period, Pulse pin, Minimum Pulse
Width, Maximum Pulse Width and Saturation input level.

The sample time defines the rate at which the block is updated. The PWM period is the
period of the created PWM signal. This parameter is limited by the maximum period of
the PWM timer (179 seconds).

Minimum and maximum pulse widths define the limits of the servo motor. Typical
values range from 0.5 ms to 2.5 ms. A duty cycle of 0% will produce pulses with the
minimum pulse width; a duty cycle of 100% will generate pulses with the maximum
pulse width.

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 17

The pulse pin defines on which pin of port PTP the PWM signal should be displayed.

The Saturation input level defines the magnitude of the block input signal beyond
which the PWM output signal has a duty cycle of 100%.

Figure 2-11 Parameters of the block Servo Motor Pulse-Width Modulation

An optional block output can be displayed by ticking the Signal monitoring check box.
This allows the current state of the PWM output signal to be uploaded to the host.
Please note that this feature is only useful when the block sample time is much shorter
than the PWM period.

2.2.6 Digital input

All available digital inputs of the mc9S12 can be accessed using the block Digital input.
The block allows specification of Port, Pin number as well as the block sample time
(Figure 2-12). The available ports are PORTA, PORTB, PTH, PTJ, PTM, PTP, PTS
and PTT. For each of these ports, one or more pins (0 – 7) can be selected. The mask
of block Digital Input is adjusted to the number of pins that has been chosen. Example:
specifying pins ‘2 4 5 7’ yields a Digital Input port with 4 block outputs. The top-most
block output corresponds to pin ‘2’ and the bottom-most output is pin ‘7’.

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 18

Figure 2-12 Parameters of the block Digital input

2.2.7 Digital output

Digital outputs can be programmed using the block Digital output. In analogy to the
corresponding input block (section 2.2.3) this block also allows specification of Port,
Pin number and Sample time (Figure 2-13). In addition to these block parameters, a
lower and an upper block input signal threshold can be specified: On-threshold (Von)
and Off-Threshold (Voff), respectively. These two levels are used to decide when the
block output should become ‘high’ (above Von) or low (below Voff). Setting Von > Voff
allows the programming of a hysteresis.

Figure 2-13 Parameters of the block Digital output

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 19

2.2.8 D/A Converter unit (DAC)

Analogue output signals can be generated using the two external D/A converters
(DAC0, DAC1). Two serially loaded Analog Devices D/A converters (AD5311) have
been included on the protective circuit board we use in our laboratory. They are loaded
through the IIC bus interface of the MC9S12 and output DC voltages between 0 and 5
volts. The block parameters are Sample time, DAC channel and Saturation level
(Figure 2-14). The latter is used to define the correspondence between block input
signal level and the full-scale output of the DAC.

Figure 2-14 Parameters of the block D to A converter

2.3 Code generation options

Real-time Workshop (RTW) allows a number of options to be specified during the code
generation for a particular target platform. All RTW options can set through the menu

Tools→Real-Time Workshop→Options… . Figure 2-15 shows the target configuration
page of rtmc9S12-Target.

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 20

Figure 2-15 Target configuration page of rtmc9S12-Target

Target specific code generation options can be set by choosing the category mc9S12
code generation options (Figure 2-16).

This category gives access to the main target configuration options. Choosing a
particular target board (currently supported boards are: Dragon-12 and MiniDragon+)
presets all remaining options with target specific default values. This accounts for the
fact that the Dragon-12, with its two serial port connectors, is commonly programmed
through Serial Communication Interface SCI0, whereas the data exchange with
MATLAB/Simulink uses SCI1. On the other hand, the MiniDragon+ only has one serial
port connector. The default options for this board therefore specify SCI0 for both
programming as well as communications. Other options include the host sided
communication port (COM1 – COM4) and the serial communication speed (300 bps –
115200 bps). De-selecting the check box External mode disables both the user
communication between host and target, as well as the upload of log data and the on-
the-fly download of process control parameters. Choosing this configuration reduces
the code size of the generated run-time executable to a minimum.

Note:

The new FreePort communication blocks are independent of the External Mode

interface. They can be used to upload/download short message telegrams

(currently limited to 100 bytes) from/to the target. When used in parallel to the

External Mode communication system, FreePort communications may appear

somewhat sluggish. This is because these telegrams can only be sent once

every sample step. The External Mode interface on the other hand uses the

entire available idle time between subsequent sample steps for

upload/download. Further details about FreePort communication can be found in

chapter 2.2.2.

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 21

Figure 2-16 Category: mc9S12 code generation options

Option Memory model defines the memory layout of the generated runtime code. Two
settings are currently available: Flash_flat and Flash_banked. The Flash_flat memory
model assumes a 16-bit linear address space (0 – 64 kByte). RAM is located from
0x1000 – 0x3FFF (12 kByte); ROM exists in two blocks, one from 0x4000 – 0x7FFF
(16 kByte), the second from 0xC000 – 0xD7FF (6 kByte). Approximately 7 kByte of the
available RAM is assigned to the HEAP and can be allocated dynamically using malloc
and/or calloc. Note that the upper ROM block has been limited to the first 6 kByte. This
is only necessary when working with ROM resident system programs in the protected
area of Flash. The boards in our laboratory have been installed with a self-test
program. For further details about the protected Flash of the 9S12 see:

www.mecheng.adelaide.edu.au/robotics/WWW_Devs/Dragon12/Dragon12.htm.

Model Flash_banked produces target executables which use the memory banking
mechanism of the 9S12 to expand the address space beyond the 16-bit limit of 64
kByte. The memory window resides at addresses 0x8000 – 0xBFFF. The MC9S12 can
be instructed to present any of 16 memory pages (16 kByte each -> 16 x 16 kByte =
256 kByte, this applies to the MC9S12DP_256_B/C) in this memory window. Setting
the Memory map parameter to Flash_banked instructs the compiler to build code that
makes use of this memory swapping mechanism.

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 22

Note:

The memory model Flash_banked should only be used if absolutely necessary. It

seems that, at the writing of this document, the generated code does not run as

reliably as when using the Flash_flat memory model. Support for the banked

memory model has only just been finished and still requires a lot of testing and

fine tuning. Communications between host and target appear to get stuck too

easily for reliable operation.

Figure 2-17 shows the second page of target specific options. This page controls a
variety of aspects of the generated code as well as the build process. The rebuild of
the static libraries of MATLAB can be enforced. Other options control the use of the
on-board LCD display of the Dragon-12. The default setting is ‘on’ for the Dragon-12
and ‘off’ for the MiniDragon+, as the latter does not feature an LCD display. Option ‘RT
logging information (debug) on SCI0’ should only be used by developers. A number of
settings allow the display of target debugging messages on the commonly vacant
Serial Communication Interface SCI0 (Dragon-12). Selecting the MiniDragon+ board
automatically deselects this option, as the MiniDragon+ commonly uses SCI0 to
communicate with MATLAB.

Figure 2-17 Category: mc9S12 code generation options (cont.)

The third options page (Figure 2-18) allows the display of timing signals on a
configurable port/pin of the microcontroller. Access to low-level timing information
generally facilitates the setting-up of a new control algorithm. The duration of the
control cycle is displayed on the chosen I/O pin from where it can be monitored using
an oscilloscope. In addition to this so-called cycle time, the controller also displays the
activity on the serial reception line RxD. This information has proved to come in handy
during the debugging of new communication modules. To disable the display of timing
signals, deselect the check box Timing signals.

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 23

Figure 2-18 Category: mc9S12 code generation options (cont.)

Figure 2-19 shows how the timing signals can be measured using a scope probe. A
typical trace of both timing signals as well as the activity on the serial reception line is
shown in Figure 2-20.

Figure 2-19 Accessing the timing signals on the Dragon-12

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 24

Figure 2-20 Cycle time (top) and serial reception RxD (bottom)

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 25

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 26

3 Building a simple model – A mini tutorial

The following example gives an outline of the build process of a simple target model
with user communication.

Let us begin by creating a new Simulink model. Change to the work folder

<WORK_ROOT> and create a new model (File→New→Model); save this empty model
as test.mdl.

Open the library browser. Upon successful installation, you should find a new toolbox
entry called Real-Time mc9S12 Toolbox. Click on the ‘+’ next to this entry to expand its
contents (Figure 3-1).

Figure 3-1 The Simulink library browser – Real-Time mc9S12 Toolbox

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 27

Drag the block Receive user data to the (still empty) model window test. From the

sources category of the main library (Simulink→Sources) select the block Pulse
Generator and place it in your model. Similarly, from the sinks category

(Simulink→Sinks) choose a Scope block as well as a Display block. Link the output of
the Pulse Generator to the input of the Scope block and the output of the Receive user
data block to the input of the Display block. Your model should look as shown in Figure
3-2.

Figure 3-2 A simple example: Real-time pulse train and user communication

Double-click on the Pulse Generator block to display its parameters. The default
settings are a period of 1 second, a duty cycle of 50% an amplitude of 1 unit and the
start-time 0. Change the period to 2 seconds and close the parameter box.

Open the Receive user data parameter page by double-clicking the corresponding
block icon. The default parameters are a sample time of 0.1 seconds (100 ms),
channel number 0 and 2 bytes (UINT8) to be received. Change the sample time to 0.2
seconds, the number of elements to 1 and set the signal data type to SINGLE; close
the dialog box.

From the Tools menu select Tools→Real-Time Workshop→Options… . You should be
presented with the options dialog box of MATLAB Real-Time Workshop. In the
Configuration category click on the push button ‘Browse…’. This produces the System
Target File Browser. Select rtmc9S12-Target for Metrowerks CodeWarrior and close
the browser dialog box (Figure 3-3).

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 28

Figure 3-3 System Target File Browser

Please note that the entry for rtmc9S12-Target only appears in the System Target File
Browser if MATLAB has been able to locate the file mc9S12.tlc on its search path. This
should be the case when rtmc9S12-Target is installed using the provided m-file script
setup.m.

If everything has worked so far, the Options dialog box should look like this (Figure 3-
4):

Figure 3-4 Options dialog box – Real-Time Workshop

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 29

From the same options dialog box choose the category mc9S12 code generation
options (cf. Figures 2-12 – 2-14). Ensure that the External mode check box is selected
and that the communication parameters have been set to 115200 bps and the COM
port you are using on your host machine. Deselect the timing signals check box.

Besides these code generation options we also have to choose an appropriate base
sample rate for our model. Click on the Solver tag of the Options dialog box and
change the solver type from Variable step to Fixed step. Select a step size of 5 ms
(0.005). This defines the base sample rate at which we intend to run the target
program. Care should be taken when choosing this value: Too small a base sample-
time might lead to problems as the model has not enough time to execute before the
next sample-time hit occurs. Sample-times of less than 1 ms are not recommended.

Change the parameter Mode from its default value Auto to Single-Tasking. This option
instructs Real-Time Workshop to build code for a single-tasking environment. Please
note that our target model has to perform two jobs, namely the generation of the pulse
train (continuous-time) and the checking for new user data every 200 ms (discrete-
time). Real-Time Workshop can service these two jobs from within the base sample
rate task (single-tasking) or as two individual tasks (multi-tasking). Please note,
however, that the latter approach only works in conjunction with a real-time kernel with
a multi-threaded task scheduler. rtmc9S12-Target currently doesn't support this option.

Set the stop time to a reasonably large value, e. g. 999999. This forces the target
program to run until we choose to stop it trough the External Mode Control Panel. To
generate code that truly runs forever, enter a stop time of inf. The completed Solver
page should appear as shown in Figure 3-5.

Figure 3-5 Simulation parameters: Fixed step size solver

Close the dialog box using the push button OK and save your model file. When run on
the target platform (e. g. the Dragon-12), this simple test program will generate a
periodic square wave signal with a 2 seconds period and a duty cycle of 50%. User

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 30

telegrams can be downloaded at a maximum rate of 5 Hz (200 ms) and will be
displayed on the Display block of the block diagram.

However, before we can receive any user telegrams we first have to design a
corresponding host model. A host model is only required when the target model
includes any of the user communication blocks.

Create a new model and save it as test_PC.mdl. From the mc9S12 library we need the
user communication block Send user data. From the Sources category of the Simulink

library (Simulink→Sources) select the block Constant and place it in your host model.

Open the Math category of the Simulink library (Simulink→Math) and find the block
Slider gain. Drag this block to the host block diagram and connect all three blocks as
shown in Figure 3-6.

Open the block Send user data and choose to all parameters to match those of the
reception side, i. e. channel 0, 1 element of type single. The sample time can be set to
0 seconds (continuous); this ensures that the host transmits new user data as soon as
it decides to update this block. When used on the host, the parameter Sample time is
relatively meaningless.

To ensure that the host model runs forever, open the simulation parameters menu

(Simulation→Simulation Parameters…) and change the Stop time to inf.

Figure 3-6 Simple test program: Host model

We are now ready to compile the target model and run it on the target hardware. Re-

open the target model (test.mdl) and select the menus Tools→Real-Time

Workshop→Build Model; this initiates the build process of the block diagram.
Alternatively, the key-shortcut CTRL-B can be used.

Notice:

When running rtmc9S12-Target for the first time, the toolbox generates a library of all
real-time modules supplied by The MathWorks (<MATLAB_ROOT>\rtw\c\libsrc). This
may take a few moments. Once compiled, the real-time library is copied to
<rtmc9S12_TARGET_ROOT>\rtwlib. Subsequent build processes do not require the
library to be rebuilt. At the end of the build process you should be presented with a fully
functional CodeWarrior project (Figure 3-7). A number of warnings indicate the

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 31

conversion from floating-point numbers to unsigned integers. These can safely be
ignored.

Figure 3-7 MATLAB generates a fully functional CodeWarrior project

Upon successful completion of the build process, the target executable has to be
installed in the FLASH-ROM of the target. This can conveniently be done using
CodeWarrior. In our laboratory, we use Dragon-12 development boards on which we
have installed Motorola’s serial monitor (for further details about this monitor program,
see: www.mecheng.adelaide.edu.au/robotics/WWW_Devs/Dragon12/Dragon12.htm).
This allows CodeWarrior to download the code into the Flash ROM of the 9S12. Simply
click the small green arrow (debugger, cf. the small circle in Figure 3-7).

CodeWarrior launches its debugger (Hi-Ware). A small requester appears, indicating
the progress of download (Figure 3-8). Once the code has been programmed into
Flash ROM, it can be started by clicking on the ‘RUN’ button (small green arrow, cf.
circled button in Figure 3-9).

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 32

Figure 3-8 Downloading the 9S12 program using the Hi-Ware debugger

Figure 3-9 Launching the executable target code using the Hi-Ware debugger

Once the target code is running, the Hi-Ware debugger is not needed anymore and
can therefore be closed. The communication interface of rtmc9S12-Target is listening
on the serial line for commands such as Connect and Disconnect, Start and Stop, etc.
These commands can be sent to the target using the External Control panel. From the
Tools menu choose the item External Mode Control Panel… (Figure 3-10).

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 33

Figure 3-10 External Mode Control Panel

Real-Time Workshop assumes a real-time target to be an autonomous unit to which a
user has to connect before they can interact with it. Click on the push button Connect
to initiate the communication between RTW and the target model code. Once
connected, the code can be started using the push button Start real-time code. Open
the Scope block to display the uploaded signal of the Pulse Generator block. A
surprising observation is that nothing is displayed. The reason for this is our choice of
an extremely large stop time ('9999999') for the target module. Simulink chooses the
time axis of all scope blocks to accommodate signals of up to this time value. To
change the settings of a scope block the target code execution has to be stopped
again.

Click on the push button Stop real-time code of the External Mode Control Panel. The
real-time code on the target is stopped and RTW disconnects from the target. On the
opened Scope window click on the parameters push button (second from the left,
Figure 3-11).

Figure 3-11 Inadequate scope settings

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 34

The appearing dialog box allows the scope settings to be customised (Figure 3-12).
Replace the automatically chosen Time range by a fixed value of, say, 10 seconds.
Close the dialog box using the OK push button. The modified scope settings can be
saved using the push button Save current axis settings (6

th
 button from the left within

the toolbar of the scope window).

Figure 3-12 Adjusting the scope settings

Re-launch the real-time code (Connect then Start real-time code). The scope block
should now display the trace of the pulse train as produced by the pulse generator.
The display block should display a value of 0. Upon starting the host model
test_PC.mdl the display block should change to the value which is sent by the host.
Open the slider gain block and change this value. The target should immediately
update to the new value.

An interesting observation is that the trace displayed by the scope block appears to
show slight irregularities (Figure 3-13, pulse beginning at 44 seconds). This has to do
with the fact that the pulse generator block is running in "continuous time", i. e. at the
base rate of the target model (5 ms). The produced amount of log data to be uploaded
to the host is unnecessarily high: The minimum width of a log data channel is 36 bytes.
The requested 200 uploads per second thus require a total amount of 7200 bytes to be
uploaded. The chosen communication speed of 115200 bps yields an average data
rate of 115200 bits per seconds / 10 bits per data value, i. e. approximately 11520 data
values per second. This shows that the serial interface cannot cope with the amount of
data to be uploaded.

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 35

Figure 3-13 Irregularities within the uploaded log data

The volume of log data can be reduced using Zero-Order Hold (ZOH) blocks. These
blocks achieve a down-sampling from a high rate to a lower rate. From the Simulink
library category Discrete drag a ZOH into the target model block diagram. Insert this
block into the signal path between Pulse Generator and Scope block. Open the ZOH
and choose an upload rate of 20 values per seconds (sample time: 0.05 seconds).
Figure 3-14 shows the modified target block diagram.

Figure 3-14 Modified target block diagram: Reduced upload rate

Save the block diagram and re-build the target code (CTRL-B). Once downloaded to
the target, the executable can be started; the scope block should now display a
symmetric pulse train with a period of 2 seconds and a 50% duty cycle (Figure 3-15).

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 36

Figure 3-15 Corrected block diagram: Symmetric pulse train

Note that you may have to change the Scope trigger point to match the chosen time
axis range. At a sample rate of 0.002 seconds it takes 5000 samples to reach 10
seconds. From the External Mode Control panel (Figure 3-10) choose Signal &
Triggering. Set the Trigger Duration to 5000 (Figure 3-16). Close this window and
restart the target code. Note that this does not require the code to be rebuilt, as the
modified simulation parameters are downloaded upon connecting to the target.

Figure 3-16 Configuring the Upload signal trigger

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 37

Most controller parameters can be changed while the controller is running (on-the-fly
tuning). As an example, change the amplitude of the Pulse Generator block. The
Scope block should immediately reflect the requested change. Figure 3-17 shows a
jump from an amplitude value of ‘1’ to the new amplitude ‘2’.

Figure 3-17 On-the-fly changes of model parameters: Doubling the amplitude

A further way to control the data logging process is the push button Cancel trigger on
the External Mode Control Panel. Hitting this button stops all upload of log data; the
label of the Cancel trigger push button changes to Arm trigger. Notice that the
controller continues to execute the real-time code and host and target remain
connected. The effect of Cancel trigger is best compared to that of a pause button. To
resume data logging click on Arm trigger (Figure 3-18).

Figure 3-18 Cancel trigger and Arm trigger

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 38

Furthermore, it is possible to disconnect from the target while keeping it running. This
is useful when an experiment runs for a long time and does not require permanent
supervision. Once disconnected, the host computer can be switched off and back on
without disturbing the currently running program on the microcontroller. To resume
control simply reconnect.

Remark:

As it can never be guaranteed that the serial link between host and target remains
active all the time, a host driven flow control has been implemented. Typical problems
occur when a user decides to launch a new application, to move or resize a window, to
open a menu, etc. Any of these events can interrupt the regular upload of log data for
an unspecified duration. rtmc9S12-Target takes care of this uncertainty by specifically
requesting the upload of every single log data telegram. The target thus stops sending
log data when the host is busy; regular operation resumes as soon as Simulink
continues to operate normally.

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 39

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 40

4 The example models

A set of sample models has been included to facilitate familiarisation with this toolbox.
They can all be found in the work directory <rtmc9S12_TARGET_ROOT>\work.

4.1 AD_9S12.mdl

The model AD_9S12.mdl implements a 3-channel A/D Conversion with real-time data
logging. A/D channels 2, 3 and 4 are read and converted every 2 ms. Data upload is
performed every 20 ms. As can be seen from the status bar (Figure 4-1), the model
has been configured to use an ODE solver (ODE1, Euler method). Note that this is not
really necessary here, as the model does not feature any continuous states.

Figure 4-1 Sample model: AD_9S12.mdl

4.2 ADC_DAC.mdl

Model ADC_DAC.mdl reads ADC channel 2 (100 times per second) and multiplies the
converted value with a sine wave. The output of this operation is then sent to the D/A
Converter (DAC, channel 0). A saturation block has been introduced to limit the DAC
input values to the valid range (0 … 5). Note that this model does not use any data
upload blocks. The External Mode could therefore be switched off to reduce the size of
the target executable to approximately 1/3 of its current size.

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 41

Figure 4-2 Sample model: ADC_DAC.mdl

4.3 DigINPort.mdl

The model DigINPort.mdl allows monitoring of the state of digital input lines 0, 1 and 2
of port PTH. The upload of log data is performed every 20 ms.

Figure 4-3 Sample model: DigINPort.mdl

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 42

4.4 DigOUTPort.mdl

The model DigOUTPort.mdl allows the control of digital output lines. Here, pins 2 and 6
of port PTT can be controlled using a slider gain. Gain parameter download is
performed ‘continuously’ (sample time 0), whereas the upload (Display) has been
limited to 10 times per second. Notice that the outputs switch ‘high’ when the slider
gain exceeds the On-Threshold (Von = 3.5); the are switched to ‘low’ when the slider
gain is set to values below the Off-Threshold (Voff = 2). Both thresholds can be set via
the block parameter dialog box.

Figure 4-4 Sample model: DigOUTPort.mdl

4.5 Pulse-Width Modulation (PWM)

Model PWM.mdl produces a host driven pulse width modulated signal with a period of
100 ms. In conjunction with a suitable amplifier (e.g. a H-bridge amplifier, stepper
motor driver), the PWM module can be used to implement a large variety of drive
systems (DC motors, servo motors, stepper motors, etc.). Forward / reverse
information is derived from the polarity of the block input signal and can be accessed
on the configured sign pin. The example uses PORTB, pin 1 to display the sign
information. Port PTP is connected to the PWM unit of the microcontroller. Each
channel has been assigned a pin of port PTP: Channel 0 corresponds to PTP.0,
channel 1 is PTP.1 and so on. A cascaded 16-bit PWM channel ties up two 8-bit units.
The generated pulse train can then be read from the ‘upper’ of the two associated
pins, i. e. PTP.1 for cascaded unit ‘0 & 1’, PTP.3 for cascaded unit ‘2 & 3’, etc. Block
inputs above the Saturation level (here: 5) are clipped and result in a 100% duty cycle.
The optional block output has been enabled (Signal monitoring). However, it should be
noted that this feature is only useful when the block sample time is much shorter than
the PWM period – here we work with a sample time of 10 ms and a pulse period of 100
ms. This means that the resolution of the monitored PWM signal is not too high.

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 43

Figure 4-5 Sample model: PWM.mdl

4.6 Pulse-Width Modulation (PWM) with user communications

Model PWM2.mdl (Figure 4-6) and the corresponding host model PWM2_PC.mdl
(Figure 4-7) demonstrate how easy it is to setup a remote-controlled robot control
system.

Figure 4-6 Sample model: PWM2.mdl

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 44

The target model (PWM2.mdl) has two PWM output channels (16-bit resolution, pulse
pins PTP.1 and PTP.3). For demonstration purposes, the PWM period has been set to
a rather long interval of 0.5 s. Background monitoring is performed at a rate of 10
times per second. The duty cycle of both channels is controlled by a signal which is
sent from the host through a user communication download block (‘Receive user
data’). The host-sided end of this communication channel is a ‘Send user data’ block in
a second, independent Simulink model (PWM2_PC.mdl). The latter runs on the host in
normal simulation mode. Changing the values of either of the slider gains initiates a
download through the associated user communication channel. The host sided model
can be started / stopped / modified at all times. It is truly independent of the target
model.

Figure 4-7 Host-end of the user communication: PWM2_pc.mdl

The use of the optional monitoring output of the Pulse width modulation block is shown
in Figure 4-8. The associated Scope blocks visualize the signals generated by the two
PWM units. Note that Figure 4-8 also shows the state of sign bit – this feature has not
been implemented on the 9S12 (worked fine in R12, but there seemed to be a problem
with this in R13).

The monitoring output can be enabled or disabled using a check-box in the block
parameter page (Figure 4-9).

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 45

Figure 4-8 Pulse width modulation: monitoring the generated PWM signals

Figure 4-9 Block parameter page: Pulse width modulation

4.7 User communication

The models of this section demonstrate how to implement a user communication
between a separate host model (running in normal mode) and the target model

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 46

(running in external mode). All examples thus require a pair of models, the target
model <my_target_name>.mdl and a corresponding host model, here referred to as
<my_target_name>_pc.mdl. Host and target model communicate via shared memory
pointers which are exchanged using the workspace variable BufferAdminVar.

Note: Due to the memory restriction and the basic interrupt handling of the 9S12,

the user communication blocks do not work as reliably as on the C167.

Communication problems can arise, in particular when a target is asked to do

too many things at the same time…
 fw-03-05

4.7.1 Download of user telegrams

The target model USRCom_dwnld.mdl and the corresponding host model
USRCom_dwnld_pc.mdl can be used to investigate the capabilities and limits of the
automatic download of user data. This target model produces a sine wave of 10 rad/s,
which is uploaded to the host as log data using the external communication interface.
Two Receive user data blocks listen for incoming user data on channel 0 and channel
1. These blocks are updated every 0.1 seconds. New data values are output to the
display blocks which can be monitored using the external communication interface. It is
thus possible to send customised user telegrams to the target, where they could be
interpreted as commands. See the Simulink library Sub-systems for ideas (Switch
case, If-action sub-system, etc.).

Figure 4-10 Sample model: USRCom_dwnld.mdl (target)

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 47

Figure 4-11 Sample model: USRCom_dwnld_pc.mdl (host)

4.7.2 Upload of user telegrams

The target model USRCom_upld.mdl and the corresponding host model
USRCom_upld_pc.mdl can be used to study an upload of externally generated user
data. The target model produces a sine wave of 10 rad/s, which is uploaded to the host
as log data using the external communication interface. Two Send user data blocks
are the source of two additional upload channels for user data: Channel 0 uploads 5
elements of data type single (float) whereas channel 1 has a data width of 7 unsigned
bytes (UINT8). Both blocks are updated every 0.1 seconds. New data sets can be
programmed through the preceding Constant blocks. RTW treats these changes as
on-the-fly parameter downloads. Once the new values are detected at the input of a
Send user data block, the block initiates the upload of a user telegram. On the host
side the model USRCom_upld_pc.mdl receives the uploaded user data values and
displays them on the associated Display blocks.

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 48

Figure 4-12 Sample model: USRCom_upld.mdl (target)

Figure 4-12 Sample model: USRCom_upld_pc.mdl (host)

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 49

4.7.3 Upload and download of user telegrams

The target model USRCom_upndwn.mdl and the corresponding host model
USRCom_upndwn_pc.mdl can be used to experiment with the simultaneous upload
and download of user data. The target model produces a sine wave of 10 rad/s, which
is uploaded to the host as log data using the external communication interface. In
addition, the user communication block Send user data uploads 5 elements of type
single (float) via channel 0. This upload is serviced every 0.1 seconds. However, a
user telegram is only sent whenever the block input has changed. The second user
channel makes use of a Receive user data block to await additional user telegrams
which may be downloaded from the host. The block specifies a sample time of 0.1
seconds and a channel width of 7 bytes (UINT8).

Note: This does not work very well on the 9S12.
 fw-03-05

Figure 4-13 Sample model: USRCom_upndwn.mdl (target)

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 50

Figure 4-14 Sample model: USRCom_upndwn_pc.mdl (host)

4.7.4 Heavy download of user telegrams

The target model USRCom_dwnld_heavy.mdl and the corresponding host model
USRCom_dwnld_heavy_pc.mdl can be used to investigate the limits of the automatic
download of user data. The target model produces a sine wave of 10 rad/s, which is
uploaded to the host as log data using the external communication interface. In
addition, a Receive user data block listen for incoming user data on channel 0 (data
channel width: 2 singles, block update rate 10 Hz). However, unlike the example
shown in section 4.6.1, this model is virtually bombarded with user telegrams. The host
model USRCom_dwnld_heavy_pc.mdl permanently updates the block input of the
corresponding Send user data block. The target thus reads a new value every time the
Receive user data block is visited by the real-time kernel. By displaying the received
user data on a regular scope block, the time delay of the serial download and
subsequent upload can be measured.

Note: This does not work very well on the 9S12.
 fw-03-05

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 51

Figure 4-15 Sample model: USRCom_dwnld_heavy.mdl (target)

Figure 4-16 Sample model: USRCom_dwnld_heavy_pc.mdl (host)

4.8 FreePort communications

4.8.1 Simple download of data to the target

The target model FreePortComm_RX_simple.mdl and the corresponding host model
FreePortComm_TX_simple.mdl demonstrate the use of the FreePort communication
blocks for data download from the host to the target. The FreePort communication

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 52

interface does not rely on the External Mode and can therefore be used with small
standalone programs as well as in parallel with optional External Mode
communications via the other port. The sample target model receives 5 values on its
SCI0 port and feeds these values to an output block for PTH. The latter block has
been configured to switch a line high whenever the incoming signal exceeds 3.5. A port
line is switched low when the input falls below 2. Port SCI0 is the free communication
port on the Dragon-12 when using External Mode. Without External Mode
communications, both ports are free. The display shown in Figure 4-17 only shows the
incoming data when using External Mode communications. Figure 4-18 is the
corresponding host sided block diagram.

Figure 4-17 Sample model: FreePortComm_RX_simple.mdl (target)

Figure 4-18 Sample model: FreePortComm_TX_simple.mdl (host)

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 53

4.8.2 Simple upload of data from the target

The target model FreePortComm_TX_simple2.mdl and the corresponding host model
FreePortComm_RX_simple2.mdl demonstrate the use of the FreePort communication
blocks for data upload from the target to the host. The target model reads the dip
switches connected to port H (PTH) and uploads this information (‘0’ or ‘1’) to the host.
The optional (target sided) display block is only serviced when running in External
Mode. Figure 4-20 shows the corresponding host model.

Figure 4-19 Sample model: FreePortComm_RX_simple2.mdl (target)

Figure 4-20 Sample model: FreePortComm_TX_simple2.mdl (target)

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 54

4.8.3 Simultaneous upload and download of data between host and target

The target model FreePortComm_RXTX.mdl and the corresponding host model
FreePortComm_TXRX.mdl demonstrate the simultaneous upload and download
between host and target using the FreePort communication blocks. Figure 4-21 is the
target-sided model, whereas Figure 4-22 shows the host-sided equivalent.

Notice that the transmission of the 4-byte data-types single and int32 currently

does not work properly. The reason is that the 9S12 stores the individual bytes

of floating-point numbers in reverse order as the host (PC). While it is relatively

simple to reverse the order of each quadruple of bytes, this has not yet been

implemented (no time to do it and we don’t need this right now…). Future

extensions might fix this bug.
 fw-05-05

Figure 4-21 Sample model: FreePortComm_RXTX.mdl (target)

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 55

Figure 4-22 Sample model: FreePortComm_TXRX.mdl (host)

4.8.4 Download of unformatted data to the target

The target model FreePortComm_RX_simple3.mdl and the corresponding host model
FreePortComm_TX_simple4.mdl demonstrate the download of raw data from the host
to the target using the FreePort communication blocks. Figure 4-23 is the target-sided
model, whereas Figure 4-24 shows the host-sided equivalent.

A similar pair of block diagrams can be designed for the upload of raw data from the
target (microcontroller) to the host.

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 56

Figure 4-23 Sample model: FreePortComm_RX_simple3.mdl (target)

Figure 4-24 Sample model: FreePortComm_TX_simple3.mdl (target)

4.8.5 Upload and download of data via both ports SCI0 and SCI1

The target model FreePortComm_RXTX_noExt.mdl and the corresponding host model
FreePortComm_TXRX_noExt.mdl demonstrate the download of data from the host to
the target using SCI0 while simultaneously using SCI1 for data upload. Figure 4-25 is
the target-sided model, whereas Figure 4-26 shows the host-sided equivalent. Notice
that this requires the External Mode interface to be disabled (no background
monitoring).

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 57

Figure 4-25 Sample model: FreePortComm_RXTX_noExt.mdl (target)

Figure 4-26 Sample model: FreePortComm_TXRX_noExt.mdl (host)

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 58

Note:

Using FreePort in parallel to the External Mode interface requires the target to be

run out of ROM (switch SW7: on, reset) to prevent the on-chip serial monitor

from interfering with the FreePort interface SCI0.

The FreePort communication blocks have been designed to cover a maximum

number of situations. They can be used for serial communication between 2

hosts (e.g. COM1 on host A to COM1 on host B), COM1 to COM2 on one and the

same host (loop-back operation), between a host and a target or between two

different targets (e.g. microcontroller A to microcontroller B).

4.9 Toggle a pin of PORTB

4.9.1 Toggling a pin of PORTB in External Mode

The model TogPort.mdl is a simple test model which can be used to toggle an I/O pin
of the microcontroller. The model uses a digital square wave block to produce an
on/off sequence on PORTB pin 0. On the Dragon-12 development board, this pin is
associated with one of the on-board LEDs. The model should therefore make this LED
flash with a period of 1 second (0.5 s on, 0.5 s off). Both frequency as well as duty
cycle of this pulse sequence can be changed on-the-fly (external mode).

Figure 4-27 Sample model: TogPort.mdl

4.9.1 Toggling a pin of PORTB in standalone mode

The model TogPortNoCom.mdl is a simple test model which runs as standalone
program, i. e. without the use of the External Mode communication interface.
Consequently, the generated executable is much smaller than is the case for all other
sample models (approx. 4 kByte instead of the typically 17 - 20 kByte). Following the

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 59

successful download of this program and a subsequent reset of the target hardware,
the program is automatically launched and runs until the power is switched off.

4.10 Miscellaneous sample models

As a proof of concept a number of the original MathWorks demo files have been built
with rtmc9S12-Target and tested on the Dragon-12 development board.

4.10.1 The F14 simulation

The model f14.mdl is a direct copy of the original Simulink demonstration file. This
example has been included to validate the correct operation of rtmc9S12-Target with
models of a slightly elevated complexity. The model runs at a base sample rate of 50
Hz (sample time: 20 ms) with an upload of log data every 100 ms.

Figure 4-28 Sample model: f14.mdl

4.10.2 A rudimentary robot control

The target model robot.mdl together with its corresponding host model robot_pc.mdl
provide a very basic remote control for a mobile robot. The target model receives
direction commands using user data channel 0. The two values are multiplied by a
common factor (speed) which is sent to the robot using user channel 1. Many more
sophisticated robot control systems can be devised. The pair of models has simply
been included to provide a simple starting point for further experiments. In our
laboratory, we supply the robot with information about its own position, thus allowing it
to react to what it sees. Co-ordinates and information about its orientation are supplied

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 60

from a suitably programmed video grabber unit and sent to the robot using two
separate user channels. Many more applications can be thought of (and put together in
minutes), including the communication between various mobile robots. This opens the
door to applications using artificial intelligence and the co-ordinated collaboration of
otherwise autonomous units.

Figure 4-29 Sample model: Robot.mdl (target)

Figure 4-30 Sample model: Robot_pc.mdl (host)

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 61

4.10.3 Band-limited white noise generator

The target model BLNoiseTest.mdl is a simple test model to ensure the correct
operation of the automatically generated real-time libraries. This example generates
band-limited white noise in form of pulses which are monitored at a rate of 20 Hz.

Figure 4-31 Sample model: BLNoiseTest.mdl

4.10.4 Generation of a chirp signal (frequency wobbling)

The target model ChirpTest.mdl is a simple test model to ensure the correct operation
of the automatically generated real-time libraries. This example generates a sinusoidal
oscillation with slowly increasing frequency. The frequency is wobbled from 0.1 Hz to 1
Hz over a sweep time of 60 seconds.

Figure 4-32 Sample model: ChirpTest.mdl

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 62

Appendix

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 63

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 64

Appendix A – The Dragon-12 development board

Under construction.

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 65

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 66

Appendix B – The MiniDragon+ development board

Under construction.

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 67

rtmc9S12-Target A Simulink Real-Time Target for the Freescale MC9S12DP256

FW-04-05 68

Appendix C – Things to do…

(1) Further improvement of the serial communication between host and target;

additional effort may be spent on re-sending of lost user data telegrams and the
re-synchronisation of host and target following a communication error.

(2) Debugging of user communication modules – these are still not reliable enough

(compared to the C167 version which exhibits no problems whatsoever).

(3) Development of a block for incremental encoders

(4) Replacing of the currently used single-tasking system with a priority based multi-

tasking system.

(5) Testing and improvement of the FreePort communication system.

(6) Enable second serial port when the external mode is not active.

(7) Enabling communication using the CAN bus.

(8) Host-to-host communication using a backbone network (e. g. Ethernet, etc.)

