
Microcontroller Programming LMP5: Interfacing to an external D/A converter 

 1 

 

Objectives 
 
- To read the A/D converter and turn the converted digital value back into an 

analogue voltage using an external D/A converter. The entire cycle including ADC 
and DAC is to be run at a fixed sample rate of 3000 Hz 

 
 
 

Introduction 
 
With this laboratory session we will complete our knowledge about principal building 
blocks of a digital control system. The output buffer board includes two external D/A 
converters (DAC, Analog Devices AD5311) which connect to the microcontroller using 
the Inter-IC bus (Philips, also referred to as I

2
C or IIC). These 10-bit DACs operate 

with a unipolar power supply (cf. Figure LMP5-1). 
 
 

 
 

Figure LMP5-1 Functional block diagram AD53x1 (Analog Devices) 
 
 
Digital data is sent to the DAC through a 2-wire interface consisting of a serial data line 
(SDA) and a serial clock line (SCL). Protocol and timing specification are described in 
the corresponding data sheet which can be found on myUni at: 
 

MP → Course Material → Tutorials → 9S12 → AD5311 
 
 
Each unit on an IIC bus must have a unique 7-bit address. The AD5311 only 
implements 2 address lines, A0 and A1. It is therefore possible to connect up to 4 of 
these units to the same segment of an IIC bus (Figure LMP5-2). The 7-bit IIC bus 
address of the AD5311 consists of a fixed part (5 bits: 00011) followed by the two 
address bits A1 and A0. For example, the address of the 3

rd
 DAC from the left in 

Figure LMP5-2 is 
 

00011----0------1 
  (fixed)  (A1)   (A0) 
 
On the protective circuit board used in our laboratory the two DACs have been given 

addresses 0001100 and 0001101, respectively. 
 
 



Microcontroller Programming LMP5: Interfacing to an external D/A converter 

 2 

 
 

Figure LMP5-2 Addressing of up to 4 DACs on the same IIC bus 
 
 
Notice that the microcontroller acts as bus master, whereas the DAC units are 
configured to be slaves. This ‘single master – multiple slaves’ mode is not the only 
possible constellation of an IIC bus communication system. There may be situations in 
which a multi-master system is more appropriate. However, in our case we are going 
to configure the MC9S12DP256B/C to be the sole master on the bus. All other units 
are assumed to be slaves. 
 
In addition to assigning the roles of master and slaves, we have to specify the direction 
in which data is to be transmitted. On an IIC bus, this is done using the 8

th
 bit of the 

address byte. By setting this so-called Read/Write bit the master communicates a read 
request, causing the addressed slave to initiate a data transmission. On the other 
hand, a cleared R/W bit indicates a write request. This causes the addressed slave to 
get ready for receiving an unspecified number of data bytes from the master. 
 
In our case, we are only interested in sending data from the microcontroller (master) to 
the DAC (slave). We therefore have to initiate a write request (R/W bit cleared). 
Assuming that we would like to talk to DAC1 (A0 and A1 are both grounded, i. e. 0 V), 
the required IIC address byte becomes: 
 

00011----0------0-------0 = 0001.1000 = 0x18 
  (fixed)  (A1)   (A0)   (R/W) 
 
This byte is sent to the bus to prepare DAC1 for the reception of two 8-bit data values. 
This 16-bit data word comprises of a 2-bit power mode selector (PD0, PD1), a 10-bit 
data value (D0 – D11) and 4 unused bits (X). Figure LMP5-3 illustrates the entire bit 
sequence of a write request. Notice that the level of the data line (SDA) has to be kept 
stable during the high phase of the clock signal (SCL) 
 
 

 
 
Figure LMP5-3 Write sequence initiated by the bus master (MC9S12DP256B/C) 



Microcontroller Programming LMP5: Interfacing to an external D/A converter 

 3 

With a single bus master, there will never be a conflict as to who gets access to the 
bus next (bus arbitration). This means that the transmission of a data value from the 
microcontroller to the DAC will take a fixed amount of time, namely the duration of 27 
SCL cycles (address byte [= 8 cycles], 2 data bytes [= 16 cycles] and 3 
acknowledgement cycles [= 3 cycles]). The SCL clock rate is therefore a crucial factor 
in determining how fast our DAC system will be. 
 
Programming the SCL clock rate is straight forward. Section 3.3.2 of the IIC block 
guide (S12IICV2.pdf) explains how to set-up the IIC Bus Frequency Divider register 
(IBFD). It all comes down to defining how many microcontroller bus cycles (24 MHz) 
make one SCL cycle. This choice depends on the physical parameters of the 
implemented IIC bus (length, pull-up resistors, number and type of connected slaves, 
etc.). On our laboratory development board with two AD5311 and 3.3 kΩ pull-up 
resistors, an appropriate value is IBFD = 0x1B. The SCL clock cycle therefore last for 
128 bus cycles of the MC9S12DP256B/C. Running at 24 MHz this amounts to  
 

][33.5][42128
][1024

1
128128

6
sns

Hz
TT BUSCSCL µµ =⋅≈

⋅
⋅=⋅= −  

 
The transmission of a single data value from the microcontroller to the DAC lasts for 
27 SCL cycles or 
 

][144][33.52727 mssTT SCLDAC =⋅=⋅= µ  

 
The maximum achievable data throughput (bandwidth) of our system is therefore  
 

][9.6
][10144

11
3max, kHz
sT

f
DAC

throughput ≈
⋅

==
−  

 
A slightly higher data throughput might be achieved with smaller pull-up resistors and 
the reduction of the bus length to an absolute minimum. The AD5311 data sheet states 
a minimum SCL cycle time of 2.5 µs – approximately half of what we are using. 
Nevertheless, even at this minimum SCL cycle time the throughput would be no more 
than 14 – 15 kHz. This is one of the disadvantages of a serially loaded DAC. Faster 
conversion rates can be achieved by using parallel loading DACs. However, the latter 
require more space and tie up a larger number of digital I/O pins. 
 
 
 

Implementation 
 
Write a short program that implements digital control system running at a base sample 
rate of 3 kHz. Each cycle, the system should read the value of one of the on-board 
potentiometers and write the value to the DAC (AD5311). 
 
Provide for a signal which will allow you to measure the duration of your control 
algorithm. This can easily be achieved by using one of the digital outputs: Upon 
entering the timer ISR set the output pin high; get a converted value from the ADC and 
send it to the DAC. Reset the output pin as soon as the data value has been written to 
the DAC. We will make use of the thus created square wave signal to ensure our 
controller works as expected. It may be a good idea to use one of the pins of port B – 
this way you will have a direct visual feedback of the efficiency of your controller: A 
brightly lit LED indicates that the control algorithm takes up much of the processing 



Microcontroller Programming LMP5: Interfacing to an external D/A converter 

 4 

time in between subsequent sample times. Conversely, a dimly lit LED indicates that 
the system is mostly idle (Figure LMP5-4). 
 

 
 

Figure LMP5-4 Timing a control application 
 
 
The following code fragments should assist you with this exercise. For your 
convenience, you can download these files from myUni: 
 

MP → Course Material → Tutorials → 9S12 → AD5311.zip 
 
 
Adding these two files (AD5311.c and AD5311.h) to your project will provide you with 
the functions DAC_Init and DAC_Write. You can use these functions to communicate 
with the AD5311. Even without knowing the exact details of the IIC interface and its 
registers you should be able to understand most of the presented code. This is a 
situation you will frequently encounter when working with microcontrollers as many 
developers make their programs available on the Internet. Recycling code can greatly 
speed up the development process – provided you are in a position of determining 
what is useful to your project and which sections need to be modified. 
 
 
dac5311.c 
 
/* ************************ dac5311.c *************************** 
 * FW-07-04 
 * DAC5311, AD5311, 10-bit digital-to-analog converter,  
 *                  unipolar supply, serially loaded 
 * ************************************************************ */ 
  
#include <mc9s12dp256.h>        /* derivative information */ 
 
 
//******** DAC_Init ***************  
void DAC_Init(void) { 
 
 /* initialize IIC bus (port J, PJ6 = SDA, PJ7 = SCL) */ 
 IBCR |= 0x80;   // IBEN = 1 
  
} 

tk tk+1 tk+2 tk+3 

tk tk+1 tk+2 tk+3 

ON OFF 

ON OFF 

t 

t 

available time 

available time 

Busy system 

Idle system 



Microcontroller Programming LMP5: Interfacing to an external D/A converter 

 5 

 
 
//******** IIC_Start ***************  
void IIC_Start(unsigned int adr) { 
 
  /* set frequency divider register */ 
  IBFD = 0x1B;                // T_SCL = 128 * T_BUS = 128 * 42 ns = 5.33 us 
                              // T_DAC = 27 * T_SCL = 27 * 5.33 us = 0.144 ms (6.9 kHz) 
                              // (p. 19, S12IICV2.pdf) 
   
  /* create START condition */ 
  while(IBSR & 0x20);         // wait for IBB flag to clear 
  IBCR |= 0x30;               // set TX and master mode (= START) 
   
  /* send address byte */ 
  IBDR = 0x18|(adr << 1);     // 0x18 = %00011[00/01]0 
                              //              ^^^^^^^^ 
                              //                 |   | 
                              //                 |   +- R/W bit: 0 (write) 
                              //                 +-- address bits: 00 or 01 */ 
   
 
  /* wait for the end-of-transmission signal from the IIC block */ 
  while((IBSR & 0x02) == 0);  // wait for IBIF flag to be set (end of transmission) 
  IBSR |= 0x02;               // clear IBIF flag 
 
} 
 
 
//******** IIC_SendByte ***************  
void IIC_SendByte(unsigned char data) { 
 
  /* send data byte */ 
  IBDR = data; 
 
  /* wait for the end-of-transmission signal from the IIC block */ 
  while((IBSR & 0x02) == 0);  // wait for IBIF flag to be set (end of transmission) 
  IBSR |= 0x02;               // clear IBIF flag 
   
} 
 
//******** IIC_Stop ***************  
void IIC_Stop(void) { 
 
  /* create STOP condition */ 
  IBCR &= ~0x20;              // clear master bit 
 
} 
 
 
 
//******** DAC_Write ***************  
// perform 10-bit digital to analog conversion 
// input: DAC address (0 or 1) 
//        10 bit (signed) integer value to be converted 
void DAC_Write(unsigned int adr, short value) { 
  
unsigned int volatile  DAC_value; 
  
 /* assemble DAC_value word (16 bit) */ 
 DAC_value = 0x0000;      // leading 2 don't care bits: 0 
                          // PD1 = PD2 = 0  (normal [power] mode) 
                           // trailing 2 don't care bits: 0 
                           
  /* set data bits */ 
  DAC_value |= ((value & 0x3FF) << 2); 
   
   
  /* --------------------------- */ 
  /* communicate with the AD5311 */ 
  /* --------------------------- */ 
   
  /* START condition */ 
  IIC_Start(adr); 
   
  /* send data byte #1 */ 
  IIC_SendByte((unsigned char)((DAC_value & 0xFF00) >> 8)); 
   
  /* send data byte #2 */ 
  IIC_SendByte((unsigned char)(DAC_value & 0x00FF)); 
   
  /* STOP condition */ 
  IIC_Stop(); 
  
} 



Microcontroller Programming LMP5: Interfacing to an external D/A converter 

 6 

 
 
dac5311.h 
 
/* ************************ dac5311.h ***************************** 
 * FW-07-04 
 * DAC5311, AD5311, 10-bit digital-to-analog converter,  
 *                  unipolar supply, serially loaded 
 * ************************************************************ */ 
  
//******** DAC_Init ***************  
// Initialize DAC 
// input: DAC address 
// output: none 
// errors: none 
void DAC_Init(unsigned int adr); 
 
//******** DAC_Write ***************  
// perform 10-bit digital-to-analog conversion 
// input: DAC address (0, 1) 
//        10-bit (signed) integer value 
void DAC_Write(unsigned int adr, short value); 

 
 
 
Test your system by measuring the output voltage of the selected DAC. This should 
reflect the voltage applied to the ADC. 
 
Measure the sample period of your control cycle as well as its duty cycle (ON phase, 
see Figure LMP5-4). Express the duty cycle as a percentage of the sample period. 
 
Measure the IIC clock signal (SCL) during transmissions to the DAC. This should look 
somewhat as shown in Figure LMP5-5. 
 
 

 
 

Figure LMP5-5 Transmitting a value to the DAC (AD5311) 
 
 
Does the overall duration of this pulse train confirm your expectations? 
 



Microcontroller Programming LMP5: Interfacing to an external D/A converter 

 7 

Decrease the timebase of the scope (sec/div) to inspect the shape of the individual 
SCL clock pulses (Figure LMP5-6). 
 
 

 
 

Figure LMP5-6 Shape of individual SCL clock pulses 
 
 
Determine the length of an SCL clock cycle. Is this duration as expected? How do you 
explain the rounded shape of the rising clock edge? Can you think of a way of 
improving the rise time? 
 
 

Modify your program to read the signal of a signal/function generator applied to ADC 
channel AN06. Produce a sine wave of 20 Hz with an peak-peak amplitude of 4 V and 
a 2 V DC offset, i. e. the entire signal fits into the range from 0 V to 4 V. Verify the 
correctness of your settings by measuring the signal with the oscilloscope. This kind of 

a quick test should always be done before you apply a signal to the microcontroller! 
Run your program and measure both input signal (from the function generator) and 
output signal (from the DAC). You should end up with a display similar to that shown in 
Figure LMP5-7 (CH1: DAC output, CH2: ADC input). 
 
Now change the frequency of your input signal. At what frequency does the output 
signal no longer resemble a sine wave? At what frequency would you expect aliasing 
to occur? How many conversions per period are required to represent a signal without 
loss of information? 
 
Set the frequency to 100 Hz. Zoom into the trace of the output signal and observe its 
step like characteristic. How does this relate to the resolution of the DAC? What would 
be the appropriate thing to do to make this signal look a little ‘nicer’? 
 
 



Microcontroller Programming LMP5: Interfacing to an external D/A converter 

 8 

 
 

Figure LMP5-7 Direct data throughput (ADC → µC → DAC) 
 
 
Conclude this exercise by modifying your controller algorithm (currently a gain of 1). 
Produce an output signal which is 
 

nn xy ⋅−= 5.0  

 
Notice that this equation indicates a direct feed-through law (the output depends on the 
input value at the same sample instance). Strictly speaking this is not possible. 
However, direct feed-through can be achieved in approximation whenever the 
processing time is short compared to the overall sample time (cf. the idle case shown 
in Figure LMP5-4). 
 
 
 

Extension 
 
If you are keen, you can try to improve the appearance of the output signal by up-
sampling (interpolation filter). 
 
 


