Microcontroller Programming LMP2: Metrowerks’ CodeWarrior IDE

Laboratory LMP2 — Example based introduction Metrowerks’ CodeWarrior IDE

Objectives

- Tolearn how to generate a small Metrowerks CodeWarrior project
- To debug an application using the simulator of CodeWarrior
- To debug an application using CodeWarrior’s source-level debugger Hi-Wave

Introduction

The Motorola MC9S12DP256B/C (e-www.motorola.com) is a member of Motorola’s
HC12 series of 16-bit microcontrollers. With its large number of peripheral units (5
independent CAN interfaces) this controller is widely used for industrial automation,
automotive applications and consumer electronics. Figure LMP2-1 gives an overview
of all hardware units of the Motorola MC9S12DP256B/C microcontroller.

ey ki :
&€ ITH OTH ITH ITHY =
(1

/14 {14 a OTHE:

Figure LMP2-1 The MC9S12DP256B/C microcontroller

In addition to a substantial number of general purpose digital 1/O lines, the controller
features 8 pulse width modulation (PWM) channels, two 8-channel A/D converters (10-
1

|Microcontro|ler Programming LMP2: Metrowerks’ CodeWarrior IDE

bit), 2 asynchronous serial communication interfaces (SCI), 3 synchronous serial
peripheral interfaces (SPI), an Inter-IC (lIC, I°C) bus interface, 5 CAN bus interfaces,
an Enhanced Capture Timer (ECT), 256 kByte Flash EEPROM, 4 kByte EEPROM, 12
kByte RAM, etc. The bus speed can go up to 50 MHz, with operations being clocked at
up to 50 MHz.

Figure LMP2-2 presents a more detailed overview of the internal structure of the
MC9S12DP256B/C.

WRH WRH Ji=VRH
| 256K Byte Flash EEFROM | ATDD wr | ATDA vEL la=VRL
VDDA | VDDA fa—=vODA
| 12K Byle RAM | VESA | vass fa—vssa
AND papon | AMD PADOS
| 4K Byte EEPROM | AR PADDT An f] PADOS
AN papnz | A2 fa PAD0O
YOCR —] AN S [w—re00a | AnG] = fw—Pan11
VSSR —m A T |m=rap0d | And fad T p=Pan12
VREGEN —ie Voltage Regulater ANS pap0s | ANS fa- PAD13
YOO, 2 ANB PaD0s | anG i PAD14
VSS1, 20 ANT papor | AnT - PADHS
ingle-wi FLAL Jraan haae PO XADDRTA,
B Smggﬂ; E'laoﬁ?und CPU12 PPAGE PLX1 [t bape PH1 * XADDR1S®
X F - L2 it 2| s PH2Z | XADDRAG
OOPLLt] Clock and Pix3 pwmd & |i= famePica + XADDR1T:
Resat P4 e O fame-PH4 ! XADDR1E!
VSSPLL-k= PLL Generation Perniodic Interrupt vy el -II-PKSl mnnms'
EXTAL— Module COP Watchsog = [l e phr i
KT AL~ Clock Monitor Femm - .
TESET - Breakpaints 1CHC0) [b= P TO
PED—] Ll T 101 e [
PE1 ol | o T IGC2 - et)
PE 2ot Ll RITT System Enhanced Capture 10C3 paand - | poaePT2
W . Integration Timer 1oca pead O | L feaepra
§E:’;E o '?CTEE Module i0cs pea] S| beaeFs
reoaed - |2 [MC_LDA {SIM) 105 frs —
PEfmiae I IOCT Jiaey paa=FT7
PET-mae peae tOACCRTIRGS scio RAD e bz 50
T TXD |- bas P51
sCH RXD i 5 =T
HIIIITIEIIIIIIX zobslgfofmrs
©n
Multiplexed Address/iData Bus E'GS: F fal [g
SPI0 iy i et =
SCK bas- P56 =
DDRA DDRB = i % f =Pt =
[BOLG . RAE e =
PTA PTB (1850) Txe |- o | b= P10 =
**** ‘f# * ‘i ***i CANDR:&CAN-‘— ,'i oo om0 -
A O 0 . B 5 daad Do & pe]_| e 5
sfzdddzs pPepbad cang DCAN M E e 1= heeepuis]
PEONT S L 0 oo o pican - 5 e O Ib pesepua =
EEEEEEEE KESEEREE cang PRCAN T o P e b
Coa0O000 OoOcoOoo0 THCAN | E o 3 e PG %
________ (SEEEeER RERERREE o] £ pLLbew 3
Wy O THCAN =3 m
Muliplexed = % 2 22228 22232922 [Foo—RCA = £
yiideBus 22 SE5555 S33833358, ANS Tycan E
D R M mm o mm mm. -
w0 e Lewe- P10
' Multiplexed EEE RSP ' ki el &2 | = femepan]
JNarowBusg 5 5 5355858 | . SO r..' 2l KiE] 2 £ fewrue =
e . S| fa—Raw] k7 e bewe 77
Internal Logic 2.5V 1#2 Driver 5V T e e
[Voax P KA1 e bt 1
L a4 P2 kvr2feed | ez
i Py PAM3 P o e [N S
A/D Canverer SV & P kwpa el O | s
PLL2.5v Voltage Regulator Reference s s kvips fa e PP5
VDDPLL — VDDA — PAWIAG [araee] (AT e o PP
VSSPLL 'S "
—1 vesA — e = o T Lo pR7
= IS0 Fta] D pad e P HO
. MOS| fata] K1 e o P 141
Vunaﬁ%gngegu_lafr 5V & IO SPI sk o] iz o] e PH2
VSSR 53 | cia e 7 | T fuwepra
€ WSO g kia faed © i
spp Mosi -.: Fnef KIVHS e it PHS
Sk pardan] KivHG fad i PHE
55 [[NVHT e P HT
Figure LMP2-2 Internal structure of the MC9S12DP256B/C

Microcontroller Programming LMP2: Metrowerks’ CodeWarrior IDE

Notice that some pins are used for multiple purposes. For example, the general
purpose digital 1/0 port PAD shares its pins with the A/D converter. This is to say that
there are two (or more) internal circuits connected to these pins. The sample-and-hold
amplifier of the A/D converter unit is connected in parallel to the output driver(s) of port
PAD (configured as output) as well as the corresponding input buffer amplifiers (PAD
configured as input). This practice of sharing the limited number of pins between
several hardware units is common to most microcontrollers. It has to be taken into
account when considering the suitability of a particular controller for a specific task.

A number of programming environments are available for the MC9S12DP256B/C, both
commercial as well as free software (GNU, www.gnu-m68hc11.org). In this exercise
we will use Metrowerks’ CodeWarrior, an Integrated Development Environment (IDE)
which includes many useful features to assist us with the software development
process. A 12 kByte code-size limited evaluation version can be obtained free of
charge from www.metrowerks.com/MW/download/default.asp.

Creating a new project using a project stationery template

In this section we are going to experiment with a small project which simply outputs a
bit pattern on the LEDs connected to one of the digital /0 ports of the microcontroller.
To keep things simple, we are going to develop our programs based on a predefined
project template (stationery).

CodeWarrior assists software designers by providing them with templates for projects
(stationery) which define the most commonly used settings and compiler options. For
this set of laboratory exercises the stationery Dragon12_small has been created. This
template defines an empty project with three targets: Simulation, Monitor and Release.
A target can be seen as a recipe of how to compile a number of source files for a
particular target platform/environment. A project which is targeted at a simulator might
be different from a project which runs on a development board such as the Dragon-12
and the final release version usually differs from the corresponding debug version. For
example, the release version may be programmed into a secure area of Flash
EEPROM to prevent unauthorised and/or accidental modifications of the code.

The stationery Dragon12_flat has been put together for laboratory exercises using the
Wytec Dragon-12 development board. It is configured to build applications with a flat
memory model. This implies a linear 16-bit address space ranging from 0 to OxFFFF.
Figure LMP2-3 shows the memory map of this memory model.

The free evaluation version of the CodeWarrior compiler can produce executable files
with a maximum code size of up 12 kByte. All our programs will therefore be compiled
for the Flash EEPROM section from 0x4000 to Ox7FFF. Variables can be allocated
(statically or dynamically) within the 12 kByte of on-chip RAM (0x1000 to Ox3FFF). The
4 kByte EEPROM (0x0000 to OxOFFF) will not be used.

Microcontroller Programming LMP2: Metrowerks’ CodeWarrior IDE

0x0000

EEPROM (4 kByte) Registers (1 kByte)
0x1000 | RAM (12 kByte)
«— Program variables will be
allocated here
0x4000 | £} ASH ROM_4000 (76 kByte)
«— Program code will be stored
here
0x8000 | £ ASH BANK WINDOW
(16 kByte)
(not used in the flat memory model)
0xC000 | £ ASH ROM_C000 (76 kByte)
O0xF800 | Hes12 Serial Monitor (2 kBvte) Interrupt vector table (OxFF80-...)
OxFFFF
Figure LMP2-3 Memory map of the flat memory model

Notice that the special function registers (Figure LMP2-4) are mapped into an area
overlapping with the EEPROM. The lowest 1024 bytes of the 4k EEPROM will be
masked by these registers and cannot be used — unless “special steps” are being
taken (the starting address of the EEPROM can be redefined). Also notice that a small
monitor program resides in the upper 2k of the available memory space. This program
will allow us to communicate with the target through the serial communication interface
SCI0 during the debugging phase. The monitor program is in a secure area of the chip;
it can therefore not be erased by accident.

Microcontroller Programming LMP2: Metrowerks’ CodeWarrior IDE

Address Module
0000 — 0017 JOORE (Ports A, B E, modas, inits, tast)
0018 — 50019 | Heserved
o0 A~ 30018 | Device D registar (FARTID)
s001G —s001F [CORE (MEMSIZ, TR, HPRIC)
F0020 — 50027 | Heserved
zooza — o2k | CORE (BDRM;

E0020 — 50033 [OORE (PHAGE, Port K)
So02—5003F [Clock and reset generator (FLL, HTI, GOF)
o040 —s007F | ECT 16-bit, 8 channals

o080 —so0ak [ATD 10-bit, 8 channals (ATDO)
0040 — 30027 | PWI 8-bit, 8 channals

S00LE — 000 | SL]0

S0000 — 20007 [SGH

gooDe —s00DF [SFlO

S00ED — s00ET | 1IC

s00E2 — s00EF JEDLC

So0F0 —s00FT [SHN

SO0FE - s00FF | SFI2

F0100 - s010F | FLAaSH contral registar

0110 —s011E | EEPROM contral ragister
$011C-%011F | Heserved

F0120-5012F | ATD 10-bit 8 channels (aTDA)
0140 —3017F [CAND

go180- sBF [CAMNA

So1co —s01RF JCANZ

0200 —s023F | CANZ

F0240 — 5027F [PIM

sza0 —s0zBF | CAN4

S0ZL0 — SUaFT | heserved

Figure LMP2-4 First 1024 bytes of the memory map: Special function registers

Launch the CodeWarrior IDE from the Windows Start menu (entry: Programs —
Metrowerks CodeWarrior — CW 12 V3.0 — CodeWarrior). You should be presented
with an empty screen.

From the File menu select ‘New...” to create a new HCS12 Stationery project. Enter a
project name (e.g. myHello) and click on ‘Set... (Location)’. This allows you to save
your project in a folder of your choice (Figure LMP2-5).

Microcontroller Programming LMP2: Metrowerks’ CodeWarrior IDE

i Metrowerks CodeWarrior -] x|

File Edit Wiew Search Project Debug FProcessor Expert Window Help

Rl CEER A R EERE AR L RS NEN

R

Project | Fie | Object |

Empty Project Project name:
HCIS}12 New Project Wizard |

HCS12 Stationery
Location:

|C:\Documents and Settings'fwo| | Set

e
Savein: |) _work rleEmerE-

_S12_Flash_Template [CmyRTI (SmySIG_through
_template [Emysc1_ap_pa ([E3mySIG_through2
Metrowerks_DP2568 [CS)mySCIDatslogger ([E3mySIG_through3
myADC 2mysic_FR127 =2myTc?
myBlinky_DBug12 DmysIG_IR 2@myToF
myBlinky_orig CmysIG_IR _web CmyTOF_RAM

File game: [myHello]

Save astype: [Project Fies {“mep)
¥ Create Folder

#isert| | @ @ & T 5 AEEED O |[FFswr-n.| o, | Ereavse., | B e |[f netove.. |E @ MENSSABEOD mosem

Figure LMP2-5 Creating a new project using an HCS12 Stationery

A small requester appears allowing you to choose the type of stationery to be used
(Figure LMP2-6). Expand the list of supported boards and select Dragon12_flat.

Mew Project ﬂ

Select project stationeny:

IE Project Stationery
= Board Support -
- 8312badge
- cmil 25-dp256
DragonZ_flat
- evh312dp256
‘- HC512 T-Board
- HCS512_Stationeny

hd|
k. I Cancel |

Figure LMP2-6 Selecting the Dragon12_flat stationery

CodeWarrior now makes a copy of the Dragon12_flat stationery project and saves it as
myHello. If everything worked so far, you should be presented with a fully functional

6

Microcontroller Programming LMP2: Metrowerks’ CodeWarrior IDE

project with a small main program (Figure LMP2-7, all project groups have been
expanded).

{4 Metrowerks CodeWarrior =& x]
Fle Edit Vien Search Project Debug Processor Expert Window Help

s Eo - <hBaAA RN mNERsEER
ixl

myHello.mcp I

® Smulstor 2 IB {9/ @ 5' >

Files | Link Ulderl Targetsl

| Fie | Code [Dad[# 2

YN EN T CR TR E Ty FY Y TN TR C TN ER Y CY PR C CY TR EY TY EY Y Y T

B is_vectors.c
B pih
L4 B pllc
@ [E423 Startup Code
L4 B StatlZc
@ EE3Pm
B bumer.bbl
L3 B _MCI5120256_FLA.
« =23 Libraries
B mcds12dp25E.h
L4 B mcds12dp256.c
*

22
3
foocoocoddoooococoao

docoooddoooooooo
El

B ansizlb
=23 Debugger Config File
B s

=)
=1

2223 I3
=]

2232
oo o
5 3i3E50s 5

g2z T3
=

B sim_preload.cmd
B sim_reset.omy d
B sim_setepu.cmd

-]

21 files [1} 0

[
Hse| |3 @ 8T AEEBB O |Freens. | 0. | £tedoor.. | Hwz ver...|[E verowe.. | E| [EAOE@EFNSBO 15pH

Figure LMP2-7 The CodeWarrior project stationery Dragon12_flat

The left-hand side of Figure LMP2-7 shows the (fully expanded) project tree for target
Simulator. There are a number of target groups (symbolised by a small folder icon)
containing a variety of files, e.g. source files, header files, configuration files and
special command files. Start12.c is a module which runs before your main program;
most hardware dependent initialisations are carried out by a function called _Startup
(defined in Start12.c). Group prm includes parameter files such as burner.bbl
(describes the making of Flash programmable S-Record files) and the memory map
definition file _MC9S12DP256 FLAT.prm. The library group includes statically linked
libraries as well as special function register definition files. Finally, the debugger groups
configure the built-in simulator and debugger (Hi-Wave).

Fortunately, you can ignore most of these groups and files — they have been included
to make your life easier. The only target group you will have to deal with is Sources.
This group contains the main program file main.c, a pre-defined interrupt vector table
isr_vectors.c and two support files pll.c and pll.h.

Inspect the target column (red bulls-eye with black arrow, cf. Figure LMP2-7). This
column specifies if a project file belongs to the chosen target (currently: Simulator).
Observe that the debugger configuration file Simulator.ini is part of this target, whereas
the file Monitor.ini is not. Similarly, the debugger command files sermon_[name].cmd
are not part of target Simulation (no dot in the target column).

Change the target from Simulator to Monitor. This can be done by selecting Monitor
from the pull-down menu in the target browser toolbar (Figure LMP2-8).

7

Microcontroller Programming LMP2: Metrowerks’ CodeWarrior IDE

{4 Metrowerks CodeWarrior =& x]

Fle Edit Vien Search Project Debug Processor Expert Window Help

s Eo - <hBaAA RN mNERsEER
ixl

myHello.mcp I

® Smulstor

ey By B

—

i | Doz | Dol [
513 Sourees [0.
« B mainc a 0
L4 B is_vectors.c [t} 0

B pih 0 0.
L4 B pllc [t} 0+« =
@ [E423 Startup Code [1} 0«
L4 B StatlZc 1} 0
@ EE3Pm [1} 0«
B bumer.bbl n'a néa
L3 B _MCI5120256_FLA. n'a néa +
« =23 Libraries 0

B mcds12dp25E.h [1} 0+
L4 B mcds12dp256.c 1} 0 =«
L3 B ansizlb [t} 0

=23 Debugger Config File [t} 0
B Simulatorini n'a néa e

YN EN T CR TR E Ty FY Y TN TR C TN ER Y CY PR C CY TR EY TY EY Y Y T

B Monitor.ini n'a néa
(=423 Debugger Command Files [t} 0«
B semon_startup.cmd nfa nda
B semon_postioad.cmd n'a nfa
B semon_preload cmd na nta
B semon_reset.cmd n'a néa
BB sim_startup.cmd n'a nla s
B sim_postload.cmd n'a néa e
B sim_preload.cmd nia néa *
B sim_reset.omd n'a néa «

B sim_setepu.cmd nia néa *

-]

21 files [1} 0

[
Hse| |3 @ 8T AEEBB O |Freens. | 0. | £ tedoor.. | Hwz ver... [verowe.. | B [EAOE@EFNSBO 157em

Figure LMP2-8 Changing targets

Notice that the Monitor target includes a different subset of files, e.g. the monitor
command files sermon_[name].cmd instead of sim_[name].cmd. Change the target to
Release. The release target produces a Motorola S-Record file which can be
downloaded (‘burnt’) to the microcontroller's Flash EEPROM. Release includes the
‘burner’ configuration file burner.bbl. This is a format specification of the downloadable
S-Record file.

Switch back to the Simulator target and open the source file main.c.

/* Example program for the Wytec Dragon 12 (MC9S12DP256C) */

#include <mc9s12dp256.h> /* derivative information */
#include "pll.h" /* defines _BUSCLOCK, sets bus frequency to _BUSCLOCK MHz */

void main(void) {

/* set system clock frequency to _BUSCLOCK MHz (24 or 4) */
PLL_TInit();

/* set port B as output (LEDs) */
DDRB Oxff; // Port B is output
PORTB 0x55; // switch on every other LED

/* forever */
for(;;){}

This small program first boosts the system bus clock from half the value of the crystal
oscillator (0.5 x 4 MHz = 2 MHz) to the maximum clock frequency of 24 MHz
(PLL_Init). 1t then defines the pins of port B as outputs (DDRB = OxFF — setting a bit in
the Data Direction Register of port B activates the corresponding output driver circuit).

8

Microcontroller Programming LMP2: Metrowerks’ CodeWarrior IDE

On the Dragon12 development board, port B is connected to an array of LEDs. The 3¢
line of main finally sets every other bit of port B to ‘1’ (0x55 = 0101.0101). This displays
an on/off pattern on the LEDs.

To simulate this program within the CodeWarrior debugger/simulator (Hi-Wave) click
on the small green ‘Debug’ button (Figure LMP2-9).

{4 Metrowerks CodeWarrior =& x]

Fle Edit Vien Search Project Debug Processor Expert Window Help

AEEE2 < hARAA AN ESRSEER

==
—— —~ I
= % Example program for the Wytec Dragon 12 (MCOS12DP25EC) = a
® Nontor vmv@ ple prog y E It) j
#include <nc9=12dp256 h> % derivative information <
Files | Link Order | Targets | #include "pll b /% defines BUSCLOCK, =sts bus frequsncy i
¥ | Fie | Code | Data 3 [=] . . .
T 0 | woid main(void) {
¢ Bpend o, D /% set system clock frequency to _BUSCLOCK MEz (24 or 4) =~
¢ E_vectorse o 0 v PIL Init():
8 pih i 0. = =
L2 B ple 0 0+« »d /% met port B as output (LEDs) *-
@ [E423 Startup Code a 0 « = DDRE = 0O=ff: ~/ Port B i= output
¢ Sl i 0 =z PORTE = 055" /7 @witch om every other LED
@ EHEAPim [t} 0« =l
M buines bbl na i =
v o MCISIZDESEFLA. na ni s
& =153 Libiaries 0 De ox 7* forever */
B meds1 24256k i oe = for (04}
¢ [medsl2dp256.0 i Do ox ¥ I
¢ ansilb i oe =
=153 Dsbuaaer Corfia Fils i ie oo
B Simulatarini na i =
B Moriter i na onia e ozl
=153 Debugger Command Files 0 be =
B sermon_starup cood wa onés s oml
B semon_postioad.cmd na onfa s =
i semir_preload crd wa onis szl
B semon_reset omd na onfa e =
B sim_startup.cmd nia nia =l b6 M B i Line 21 Col19 | [«
B sim_postoad.omd na i =
B sim_preload.cmd n'a néa =l
B sim reset omd na i =
B sim_setepu.cmd n'a néa =
|
21 fles [[

[
Hse| |3 @ 8T AEEBB O |Freens. | 0. | £tedoor.. | Hwz ver... [verowe.. | B[EAOE@EHNSBO 1apr

Figure LMP2-9 Launching the debugger/simulator (Hi-Wave)

CodeWarrior works out the dependencies of the current target (Simulator) and, if
required, rebuilds the code. A small red check symbol in the leftmost column of the
target browser window marks files that have been modified and need to be re-compiled
(see Figure LMP2-7). Once the target has been brought up-to-date the simulator is
started and the target code is loaded. A breakpoint has been placed at the beginning
of main and the controller specific start-up code has been run.

Hi-Wave allows you to simulate a variety of input and output units such as analog input
voltage stimuli, output LED arrays, LCD displays, virtual keyboards, etc.

From the Component menu open the IO _LED array (Figure LMP2-10). This 8-fold
array of LEDs can be hooked up to any output port of the microcontroller, thereby
simplifying the testing of simple digital output drivers (Figure LMP2-11).

| Microcontroller Programming

LMP2: Metrowerks’ CodeWarrior IDE|

Open Window Component

lean | List | Details |

.-"H\EDH“ n | .
; in»
oo ifh
W agon Ade_dac Azzermbly Cormand
i
= X| L
Coverage Dac Drata Ddemaz
—h LED I
e
lo_ports Lcd b ernony
— | & | [N
1]

g; k.

Commaszter

#| L

|hzpect

It_keyboarc

Figure LMP2-10

Using virtual input and output components

i True-Time Simulator & Real-Time Debugger C:\Documents and Settings\fwornle\My Documents\frank\Microcontroller\9512DP256B)_work\myHello\5 -2 x|
File View Run Simulator Component Led Window Help
L[(e]]| Bl o[[=]e]e]+] 9
O R [@eemey =0
C:A\Documents and Settings fwornle™My D ocumentshfrank \Microcontraller35 120 P256B%_workh. . \main.c [Lire: 7 mairn
voi-lmain (veid) (B :l ISR 4 ﬂ
/* set system clock frequency toe _BUSCLOCK MHz (24 or 4) */ g
BIPLL Init(): DA
2
BRR *+0 sabs = 4083 LI
HC12 CPL Cycles: 42 [Auto
4 o | B o A o B [
— IX 4070 IY 0
Dprocedwe =100x|| 12 [sosz o famsz emee[o
5P 13FD CCR | SXHINZVC
main ()
i
[alelelalalalala] [Aue |
PORT=00 DDR=00] 00] R S ii
U UU LU W U ud GG -- GUTEEuu-
U U LU WU UG ud GG UL GUeeuuu
-- LU UL UL UL UG UY - -uuuuua
= _ialx -— - e e e e
& =8l e —
main.c Auo | Symb [Global ©o-- UM WA UM U - U G-UEu-w
2 volatile DDRABS U U LU U0 Ud ud -- Ul uuuuuu-u
i - UL UL U0 LU UU UU UG U0 uuuuuad
T uuIIII
uuuTuIG
uuuTuIG
uuuTuIG =
=10l x|
ol =
main Autg | Symb Local
d/sim_postload.cud
Postload command file correctly executed. _|
in> =l
For Help, press F1 [2.000000MHz [42 [HEs12 core [Breaknaint

#o| @O IRNERAGCER D ©

Figure LMP2-11

The Hi-Wave debugger/simulator, LED array

| BBvseu.| oo, | @16sd... | Bz |Evero.. [Biwe. |G| [EADEBEHNSBO taem

Right-hand mouse click inside the LED window to get a small pop-up menu. Select
Setup to open another pop-up menu which will allow you to attach the LEDs to a
particular I/O port of the microcontroller (Figure LMP2-12).

10

Microcontroller Programming LMP2: Metrowerks’ CodeWarrior IDE

x
Configure Addreszes
PORT |-| j
DDR |3
Set Target
Target ITargechiect j

Ok I Cancel |

Figure LMP2-12 Configuring the LED output module

Port B of the MC9S12DP256B/C is memory mapped at address 0x0001 with the
associated data direction register (DDR) at 0x0003 (see the extract of the user manual,
chapter 1.6, Figure LMP2-13). ‘Connect’ the LED array to port 0x0001 and set DDR to
0x0003.

$0000 - $000F MEBI map 1 of 3 (Core User Guide)
Address Name Bit 7 Bit6 Bit 5 Bit4 Bit 3 Bit 2 Bit 1 Bil 0
Read:))
$0000 PORTA /=0 Bit7) 5 4 3 2 1 Bit 0
$0001 porTB) Headl gyg B 5 4 3 2 1 Bit 0
Wirite:
$0002 oora Readl gy B 5 4 3 2 1 Bit 0
Write:
Read:))
$0003 DCRB i Bit 7 B 5 4 3 2 1 Bit 0
Write:
Read:[0))) D 0 0 0
$0004 Reserved ...
Read:[0))) 0 0 0 0
$0005 Reserved Write:
Read:[0 0 0 0 0 0 0 0
$0006 Reserved Write:
Read:[0 0 0 0 0 0 0 0
$0007 Reserved .
Write:
$0008 PORTE ead:l gy g 6 5 4 3 2 =& L8
Write:
$0009 ppre Rl gy 6 5 4 3 Bit 2 0 9
Write:
$000A PEAR Eﬁig NOACCE —2 PIPOE | NECLK | LSTRE | ROWE 0 9
$000B MODE Eﬁig mopc | mope | mopa 0 S 0 EMK | EME
Read: 0 0 0 0
$000C PUCR m.?rie PUPKE PUPEE PUPBE | PUPAE
Read: 0 0 0 0
$000D RDRIV mfrie RDPK RDPE ROPE | RDPA
$000E egerL eadd O 0 0 0 0 0 0 ESTR
Write:
Read:[0 0 0 0 0 0 0 0
$000F Reserved E.El
Write:

Figure LMP2-13 Detailed memory map, special function register block

11

Microcontroller Programming LMP2: Metrowerks’ CodeWarrior IDE

Step over the first two instructions (Figure LMP2-14). The colour of all 8 LEDs changes
from grey to green. This indicates that the associated microcontroller pin has been set
as output (— LED active). The reset state of the port P data register is zero,
corresponding to a LOW state (green) of all LEDs. Notice that you can manually
activate/deactivate individual LEDs with left-hand mouse clicks onto the corresponding
icon. However, while this changes the state of the associated data direction register
(DDR), the port register is not affected.

1.2, True-Time Simulator & Real- Time Debugger C:\Documents and Settings\fwornle\My Documents\frank\Microcontroller\9512DP256B)_y =& x]
Fle View Run Smulstor Component Ledgsegow Help
ST EIEE (Y IE R
ingle Step (F11) Bla/E =101.x]
C:A\Documents and SettingssfiwomlesMy Documentsifrank\Microcontioller\351 2D P25ERY_work). \main.c [Line: 7
verMmain(void) {E - ﬂ
-0l x|
- [Auto
H
=0l x|
x
o] 53
SB000008
PORI=00 DDR=FF ﬂ
& pata:1 B =1oix]||;
main.c Auto [Symb [Giobal ||c
_DDRAB <2> velatile DDRABSTR
FORTZB <2> volatile FORIABSIR 0 uu UU UYL UU UU WU UG uu
- 2 uu UL UL VU WU UY uY uu
Uu uu UYL UY Y u
=10l
1ol x| El
main Auto [Symb [Local
in> |

Execute one source instruction |2.000000MHz (74 [Hcs12 core |sTEPPED OVER

#ser| | B @ 8 T3 AECEED O |FPree.| Do | Eeds, | | By |[Biue. |H BEAOEREHNSBO vev

Figure LMP2-14 Programming DDRB as output

Continue to step through the program. As you execute the next line (PORTB = 0x55)
the state of every other LED changes from LOW to HIGH. The |IO_LED visualisation
tool uses the colour red to display a HIGH level of the corresponding pin (Figure LMP2-
15).

Reset the target by clicking on the reset button (small red circle with black arrow, see
Figure LMP2-15). This should take you through a simulated reset cycle. The
microcontroller fetches the address stored in the reset vector (OXFFFE — OxFFFF, see
Figure LMP2-16 for an extract of the interrupt vector table of the MC9S12DP256C) and
diverts code execution to wherever this vector points to.

Right-hand mouse click into the memory window and select ‘Address...” from the
appearing pop-up menu. Set the address to OXFFFE. The memory window should now
display the reset vector which, in our case, points to address 0x4029. This is the
beginning of the microcontroller initialisation routine _Startup. You could single step
through this system sub-routine until you reach main. Alternatively, you can simply

12

Microcontroller Programming

LMP2: Metrowerks’ CodeWarrior IDE

start code execution (green arrow). This will take you through to the beginning of main,
where our previously placed breakpoint is hit and code execution stops.

&[]
Fle yew Bun Smulstor Componsnt Source Window Help ey
BT NE (Y
[l B 1| [Assembly: =101 x|
[Line: 11
b 3
=10lx|
- [Auto
D ssrr 2 |55 B =
4 »
— | e
=I0IXI|| ze [2063 e [206a eeacE [0
s [z BINZVC
main ()
| Startup ()
=
[Auo
HiDatas I =lolx|
main.c Auta | Symb | Giobal
Bl _DDREE <2> volatile DDREBSTR
TEORTAB <2> volatile FORTABSTR
=l
|0l
=loix| B
main Aus [Symb [Local
in> |

Reset the target

Hser] [G@ACTEEAECERD ©

|2.000000MHz [B9 [Hcs12 core |sTEPPED

| B vakeu.. | G cipe.. | Elokco.. | e | Brero.. [[Bine. |@l EAOEREGHNZRO 1erm

Figure LMP2-15

Testing the state of digital I/O port B

Vector Address Interrupt Source
SFFFE, 3FFFF Reseat
SFFFC, 3FFFD Clock monitor fail reset
SFFRA, SFFFE COF failure resst
SFFFa, 5FFF2 Unimplementad instruction trap
SFFFE, 5FFFT SWI
SFFF4, 5FFF5 XIRQ
SFFF2 5FFF3 IR
SFFFO, SFFF Real-time interrupt
SFFEE, SFFEF Enhanced capture timer channel O
SFFEC, SFFED Enhanced capture timer channel 4
FFFEA, 5FFEE Enhanced capture timer channel 2
SFFES, SFFES Enhanced capture timer channel 3
SFFEG, 5FFE7 Enhanced capture timer channel 4
SFFE4, SFFES Enhanced capture timer channel 5
SFFEZ, 5FFE3 Enhanced capture timer channel &
SFFEO, SFFEA Enhanced capture timer channel 7
3FFDE, 3FFOF Enhanced capture timer overflow

Figure LMP2-16

MC9S12DP256B/C interrupt vector table (extract)

13

|Microcontro|ler Programming LMP2: Metrowerks’ CodeWarrior IDE

Quit the simulator (File — Exit) and return to the CodeWarrior environment. Change
the target from Simulator to Monitor. The Monitor target has been configured for
communication with the on-chip monitor program (Flash EEPROM area 0xF800 —
OxFFFF) of the Dragon12 development board (Figure LMP2-17). This will allow you to
perform source level debugging on the actual hardware.

Figure LMP2-17 The Dragon12 development board

The Dragon12 board features a large number of peripheral units such as an on-board
LCD display, 7-segment displays, LEDs, switches, a potentiometer, a buzzer and an
infrared (IR) transceiver unit. The microcontroller sits in the centre of an array of
connectors which give access to all of its pins.

A small circuit board has been designed to protect the controller from accidental over-
voltages and short circuits. Digital inputs can be protected using a series resistor and a
5.1 V Zener diode (Figure LMP2-18). Such a circuit can be used to shield a
microcontroller from excessive positive and/or negative input voltages.

Figure LMP2-18 Protecting digital inputs

Digital outputs can be protected against accidental shorts or too large loads using
small operational amplifiers which act as buffer between the output connector and the

14

Microcontroller Programming LMP2: Metrowerks’ CodeWarrior IDE

microcontroller. As before, accidentally applied voltages can be limited using a Zener
diode and a small series resistance (100 Q). The voltage drop across this series
resistance is usually very small. On the protective board used in the laboratory, every
output is connected to a small surface mount LED. This will make it easier to test and
debug programs (Figure LMP2-19).

100 Q
—]—1+——o
2.2 kQ olp
ﬂ 7N 51V

Figure LMP2-19 Protecting digital outputs against accidental shorts

The protective circuit board also gives access to most of the channels of both A/D
converter units of the microcontroller (all but ADO and AD1). A pair of 10 kQ
potentiometers has been connected between the supply-rail and ground; the centre pin
of these potentiometers can therefore be adjusted to any voltage between 0 and 5 V.
In addition, the board carries two serially loaded D/A converters (DAC) which can be
used to generate analogue output voltages. Figure LMP2-20 shows the Dragon12 with
the protective circuit board.

L
O tddddddd dd dd Lyl

Figure LMP2-20 The Dragon-12 with fitted protective circuit board

15

Microcontroller Programming

LMP2: Metrowerks’ CodeWarrior IDE

Figure LMP2-21 is a close-up of the protective circuit board. The connectors on the far
left are the digital inputs of port P, T and H, respectively. The connectors on the left-
hand side of the two potentiometers give access to the corresponding digital outputs.
The ADC input channels can be found on the far right of the board, whereas the two
DAC output channels are located near the top. Note that the channels of the A/D
converters have been labelled ADO2 to AD15. This might not have been the most
fortunate choice as this is not consistent with the Freescale manuals. Pins AN02 —
ANO7 correspond to channels 2 — 7 of ADC unit 0 (ATDO). Pins ANO8 — AN15
correspond to channels 0 — 7 of ADC unit 1 (ATD1). Note that channel 0 and 1 of
ATDO have not been connected as they are in parallel with switch SW7.

»—oO.

-

R
}“,
=2
1

E.
3
4.
|-
&
7

InlaTonTot" ™

1
g ol el el sl e

| L‘.u." "
g A

o Bt ! AR AR =
“26000000 "

bl

= =[xl 7

w | &

S TAR Y TR
0000000~
"PllIi L]

TS

B

‘LLLL«\&/

| = U B .
(‘).CL.-‘- ‘QL'\‘\

Figure LMP2-21

MC9S12DP256

Telelelelew]nls
TTI T T

AFAEALAL
)

¥

T

rERR e

leso

| .
LA LI T

The protective circuit board

16

Microcontroller Programming LMP2: Metrowerks’ CodeWarrior IDE|

Make sure the Dragon12 board is powered up and connected to the serial port of the
host computer. Switch SW7 controls the operational mode of the board: The red on-
board LED labelled EVB should be lit (right-hand side of the Dragon12 board). This
indicates that the board is in debugger mode.

Start the debugger by clicking on the green ‘Debug’ button of the CodeWarrior IDE.
Several things should happen: The Monitor target is brought up to date (might involve
compilation, linking, etc.) and the debugger is launched. The non-secure area of the
Flash EEPROM is erased and the target application is downloaded. Finally, a
breakpoint is defined at main and a software reset is triggered. This causes the
microcontroller on the Dragon12 board to fetch the reset vector (OXFFFE — OxFFFF)
and divert code execution to the initialisation routine _Startup. Once the breakpoint is
hit, the debugger halts code execution and displays the current register set.

Single step through the program; as you step over the second line of main the red on-
board LEDs on the Dragon12 board should display the expected pattern (0x55 =
0101.0101).

Reset the board by clicking onto the reset button of the debugger. The LEDs switch off
and the debugger returns at the beginning of _Startup. Click on ‘Start/Continue’ (green
arrow). Code execution resumes until the breakpoint is hit (beginning of main). Step
through the program as before. The LED pattern is displayed as expected.

Perform a hardware reset of the board by operating the on-board RESET button
(SW6). Note that this has the same effect as resetting the board through the
debugger.

This concludes our short introduction to CodeWarrior and the simulator/debugger Hi-
Wave. In the following sections we will write a few small programs which will teach us
how to read analogue voltages, send clear text messages to a terminal and set-up
interrupt driven timers. Eventually, all of these techniques will be combined to
implement a complete digital control loop including A/D conversion (ADC), on-chip data
processing and the interfacing to an external D/A converter (DAC). A digital FIR filter
will serve as test application.

Concluding remark

The programming of microcontrollers requires frequent access to on-line manuals
and/or the register definition header files. CodeWarrior assists the programmer in
finding and opening header files containing macro definitions such as DDRB or
PORTB. A right-hand mouse click onto such a macro makes appear a small pop-up
menu from which the entry Go to macro declaration of <NAME> can be selected. This
finds and opens the appropriate header file at the page of the macro declaration. While
not as informative as the on-line manuals, the header file can sometimes be used as
quick reference to find out the purpose and structure of any of these macros. Looking
up the macro definition of PORTB, for example, tells us that this is the special function
register B at address 0x0001 (... for all this is worth... ©)

/*** PORTB - Port B Register; 0x00000001 ***/

17

