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Objectives 
 
- To design and implement an FIR band-pass filter with a centre frequency of 20 Hz, 

a 3-dB bandwidth of 1 Hz and a stop-band attenuation of at least 60 dB. The stop-
band is specified as � 5 Hz of the centre frequency. 

 
 
 

Introduction 
 
Laboratory sessions LM1 – LM5 have introduced the tools required for microcontroller 
based digital control. With this concluding exercise we will apply these techniques in 
the design of a digital filter. Figure LM6-1 shows the frequency response of a band-
pass filter at 20 Hz with a 3-dB bandwidth of 1 Hz (!) and a minimum stop-band 
attenuation of 60 dB. The stop-band is assumed to include all frequencies below 15 Hz 
as well as above 25 Hz. Note that this is a reasonably demanding filter specification 
which might be difficult to satisfy. Remember that an attenuation of 60 dB decreases 
the amplitude of a signal by a factor 1/1000. 
 
 

 
 

Figure LM6-1 Band-pass filter specification 
 
 
Design an Equiripple FIR band-pass filter with the above filter specification. Recall that 
an FIR filter is essentially a weighted average of the current and past input values. No 
feedback of the output is required and the filter is therefore unconditionally stable. The 
number of elements in the weighted sum (filter taps) defines the filter order. Equation 
LM6.1 is the z-plane transfer function of an N

th
 order FIR filter: 
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The coefficients bk can be found in a number of ways. A convenient tool is the 
MATLAB command fdatool (Signal Processing Toolbox). Figure LM6-2 illustrates how 
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fdatool can be used to determine the required filter coefficients. A sample rate of 200 
Hz has been chosen (10 times the centre frequency). 
 
 

 
 

Figure LM6-2 Using MATLAB to determine the filter coefficients (fdatool) 
 
 
The proposed filter has a filter order of 127. This means that at every sample instance 
we have to calculate the weighted sum of the 127 most recent input values, i. e. 127 
multiplications plus 127 additions. Multiplications are CPU time intensive operations 
which often require 100s of processor cycles. We should therefore expect the 
microcontroller to be reasonably busy when evaluating the filter equation. This is the 
reason why digital signal processors (DSP) come with multiply and accumulate (MAC) 
units. A MAC unit can do one multiplication and one addition per processor cycle. The 
evaluation of a filter with 127 taps would therefore only require 127 processor cycles! 
The maximum bandwidth of a DSP based system is therefore much larger than what 
can be achieved with a standard microcontroller. Note, however, that some 
manufacturers now offer microcontrollers which include MAC units. 
 
Figure LM6-3 shows the z-plane pole-zero map of the filter. Notice that MATLAB has 

placed 127 poles at the origin (p = 0). These poles are infinitely fast (s = -∞ ջ z = e
js
 = 

0) and are therefore essentially ineffective. They correspond to the ‘missing’ 
denominator coefficients and have only been included for formal correctness. Recall 
that the general filter equation can be expressed as 
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Setting the denominator coefficients ak = 0, ∀ k ∈ {1, 2, …, M} turns equation LM6.2 
into the FIR filter transfer function LM6.1. For M = N on the other hand, equation LM6.2 
can be expressed as 
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where the zeros zj are sums of product terms of the numerator coefficients bk and the 
poles pj are sums of product terms of the denominator coefficients ak. Assuming ak = 0, 

∀ k ∈ {1, 2, …, M} is therefore equivalent to setting pj = 0, j ∈ {1, 2, …, M}, i. e. there 
are M poles at zero. 
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Figure LM6-3 Pole-zero map of an FIR filter with 127 taps 
 
 
Use fdatool to produce the magnitude response as well as the phase response of the 
filter (Figure LM6-4). Notice that the phase response is linear within the pass-band. 
This is one of the advantages of an FIR filter. 
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Figure LM6-4 FIR filter response, magnitude (bold) and phase (fine) 
 
 
To understand why this is an advantage, have a look at the group delay. The group 
delay is defined as the gradient of phase with respect to frequency. A linear phase 
response therefore corresponds to a constant group delay (Figure LM6-5). 
 
Constant group delays are important when working with multi-frequency signals such 
as audio signals or multi-tone transmission systems. The group delay of a system 
specifies how long it takes a signal group of a particular frequency to travel from the 
system’s input to its output. When the group delay is not constant we will experience 
signal distortion. A voice signal including the vowel sequence ‘u-i’ (i. e. a low frequency 
followed by a higher frequency) might for example be inverted and end up being ‘i-u’ 
because the higher frequent/faster ‘i’ overtakes the lower frequent/slower ‘u’. 
 
The constant group delay of an FIR filter tells us by how many samples a signal is 
delayed when passing through the filter. Produce the impulse response of the filter 
(Figure LM6-6) and estimate the time at which the response has reached its maximum 
(tpeak). Can you relate this time to the group delay? How many sample times elapse 
before the impulse has passed the filter? How would you describe the filter’s effect on 
the shape of the sharp input impulse? 
 
The impulse response of a Finite Impulse Response (FIR) filter ends after N sample 
times, where N is the filter order. How does the group delay relate to the filter order? 
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Figure LM6-5 FIR filter produce constant group delay times 
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Figure LM6-6 Impulse response of an FIR filter 
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Implementation 
 
We are now going to implement our FIR filter on the MC9S12DP256B/C. Inspect the 
calculated filter coefficients bk. Compare the first few coefficient (b1, b2, b3, …) with the 
last ones (…, b125, b126, b127). What do you observe? Can this relationship be used in 
any way to optimize our filter implementation with regard to the required computational 
effort? 
 
Select menu File ջ Export and export your coefficients to the MATLAB workspace 
(Figure LM6-7). 
 
 

 
 

Figure LM6-7 Exporting the filter coefficients to the workspace 
 
 
You should end up with a row vector variable Num containing the 127 filter coefficients. 
Convert this vector to a column vector and save it to a file using the following 
command line 
 
>> Num = Num’; 
>> save myFIRcoefficients.txt Num –ascii -double 

 
This command writes the filter coefficients into text file myFIRcoefficients.txt using a 
double precision format (16 digits). We will now modify this file to turn it into a C-
language variable definition. Load myFIRcoefficients.txt into notepad (don’t use the 
MATLAB editor for this) and append a comma (‘,’) at the end of every line but the last 
one. Surround all coefficients by a pair of curly brackets (‘{ }’). Precede the opening 
bracket by the C-language variable definition 
 
const float b[] =  

 
and terminate the closing bracket by a semicolon (‘;’). Save the modified file. 
Altogether you should end up with a variable definition similar to the following: 
 
const float b[] = {   1.0041285782540202e-003, 
 -2.7015465793699882e-004, 
 -7.5440253582149529e-004, 
… 
 
-2.7015465793699882e-004, 
  1.0041285782540202e-003 }; 
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By including this file at the top of your filter program you have access to all coefficients 
of the filter through the one-dimensional array b[k], e.g.: 
 
#include “myFIRcoefficients.txt” 

 
… 
y = y + b[k]*x[k] 

… 
 
The next step is to turn the FIR filter transfer function (equation LM6.1) into a 
corresponding difference equation: 
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The difference equation (LM6.6) corresponds to the filter structure shown in Figure 
LM6-8. In this diagram the filter coefficients have been labelled by h(k) rather than bk. 
 
 

 
 

Figure LM6-8 FIR filter structure (direct form) 
 
 
The above structure can easily be implemented in form of a simple for(;;) loop: 
 
  out = 0; 
  for(k=0; k<N; k++) { 
   
    /* contribution of input value x(n-k) */ 
    out = out + b[k] * inp[N-1-k]; 
   
  } 
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This assumes that the N most recent input values have been stored in the one-
dimensional array variable inp in ascending order from the oldest to the most recent 
input value, i. e. inp[0] = x(n-N+1), inp[1] = x(n-N+2), …, inp[N-1] = x(n). The current 
output value of the filter is calculated and stored in out. Figure LM6-9 illustrates the use 
of array inp[ ]. 
 
 

 
 

Figure LM6-9    Storing previous input values in an array variable 
 
 
Once the output has been updated (i. e. output value out has been sent to the DAC) 
the filter program becomes dormant until the next sample instance occurs and a new 
value is read from the ADC. At this point we need to ensure that the input value array 
is updated. The new input value is to be stored in the element containing the current 
value (inp[N-1]). However, the previous content of this element can not just be 
overwritten but has to be shifted to the element of the ‘second most recent value’ 
(inp[N-2]). This process continues until the entire array has been shifted (Figure LM6-
10). 
 
 

 
 

Figure LM6-10    Updating the input array inp[ ] 
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A C-code fragment that implements the above scheme is shown below: 
 
  /* inp[0] = inp[1], inp[1] = inp[2] … inp[N-2] = inp[N-1]*/ 
  for(k=0; k<N-1; k++) { 
   
    inp[k] = inp[k+1]; 
   
  } 
 
  /* set last element to new input value */ 
  xn[N-1] = ADC_Read(); 

 
 
This is not a very elegant solution as a lot of the already limited computing power of 
the microcontroller is wasted on unnecessary data movements in memory. A better 
approach would be to implement the tap delay line of the filter as a ring buffer. 
 
Ring buffers can be thought of as circular memories, i. e. they do not have a fixed 
beginning and/or end. A ring buffer can be accessed using freely programmable index 
pointers. In our case we need to keep track of where the current input value x(n) is to 
be stored. A simple way of doing this is to define and update an index variable 
current_input. This concept is illustrated in Figure LM6-11 for N = 16 memory cells. 
 
The advantage of this model is that we can simply shift all input values by decreasing 
the index variable current_input by one. The contents of the individual cells never have 
to be moved!  
 
 

 
 

Figure LM6-11    Ring buffer structure for a 16-elements filter array 
 
 
Implementing such a ring buffer is easy. All we need to do is to define a linear array 
and make sure that all corresponding index variables are wrapped around at both 
ends. 
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In case of a recursively updated filter such as our FIR filter, this implies the following: 
When a new input value is received from the ADC we increase the buffer index 
‘write_idx’ by one, taking care of possibly having to wrap around at the end of the 
buffer (Figure LM6-12). The new value is then stored in inp[write_idx], thus overwriting 
the oldest previously stored value x(n-127). 
 
 

 
 

Figure LM6-12    Wrapping around at the end of the buffer 
 
 
Evaluation of our filter then starts at index write_idx counting downwards. 
 
To keep things neat and tidy it would be a good idea to place all buffer-related code in 
a separate source file (ringBuffer.c), using the corresponding header file (ringBuffer.h) 
to export global variables and public functions to other source files. The following 
functions might come in handy: 
 

void  ringBuffer_Init(unsigned int size); 
unsigned int ringIndex_Inc(int index); 
unsigned int ringIndex_Dec(int index); 

 
Function ringBuffer_Init sets all elements of the globally defined buffer variable inp[ ] to 
zero. Function ringIndex_Inc increments the supplied index variable by one; the index 
variable is reset to zero if the buffer size is exceeded (buffer wraps around). Function 
ringIndex_Dec does the opposite thing: It decreases the supplied index variable by 
one; should this lead to a buffer underrun, the index variable is reset to ‘buffer length 
minus one’.  
 
The following code fragments should assist you in finding a solution using the above 
described approach. You can download an incomplete CodeWarrior project from 
myUni: 
 

Mechatronics IIIM ջ Course Documents ջ Tutorials ջ 9S12 ջ FIR 
 
Complete this project and verify that your filter complies with the given specification. 
Bear in mind that discrete-time transfer functions depend on the sample time. Make 
sure that your filter algorithm is evaluated every 1/fS seconds. 

x(n) 
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write_idx = 0 
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if(write_idx >= 128) write_idx = 0; 
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ringBuffer.c 
 
/* ********************* ringBuffer.c ************************* 
 * FW-07-04 
 * Ring buffer functions 
 * ************************************************************ */ 
 
#include  "fir.h"                   /* filter length (FIR_taps) */ 
 
 
 
/* global variables */ 
#define       rBufSize   FIR_taps    // define size 
float         inp[rBufSize];         // define the ring buffer... 
 
 
/********************* ringBuffer_Init ************************/ 
// place a value on the ring buffer 
// call-up parameters: write index, data value 
void  ringBuffer_Init(unsigned int size) { 
 
int   i; 
 
  // initialise ring buffer variable 
  for(i=0; i<size; i++) inp[i] = 0.0; 
   
} 
 
 
/********************* ringIndex_Dec ************************/ 
// decrement ring index by one, wrap around if required 
// call-up parameter: current index 
// return value: decremented index 
unsigned int  ringIndex_Dec(int index) { 
 
  /* decrement index */ 
  index--; 
   
  /* wrap around - if required */ 
  if(index < 0) index = rBufSize-1; 
   
  /* return modified index */ 
  return index; 
   
} 
 
 
 
/********************* ringIndex_Inc ************************/ 
// increment ring index by one, wrap around if required 
// call-up parameter: current index 
// return value: incremented index 
unsigned int  ringIndex_Inc(int index) { 
 
  /* increment index */ 
  index++; 
   
  /* wrap around - if required */ 
  if(index >= rBufSize) index = 0; 
   
  /* return modified index */ 
  return index; 
   
} 

 
fir.c 
 
/* ************************ fir.c ***************************** 
 * FW-07-04 
 * FIR filter  
 * ************************************************************ */ 
 
#include "fir.h"                  /* FIR_taps, b */ 
#include "ringBuffer.h"           /* ringIndex_Inc(), inp[] */ 
 
#include "myFIRcoefficients.txt"  /* filter coefficients, fpass = 20 Hz, filter order: 
127 */ 
 
 
 
//******** FIR_filter ***************  
// filter signal in 'inp' using coefficients b 
// input: read index 
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// output: filter output (16-bit, signed) 
signed short FIR_filter(int read_idx) { 
 
int     k; 
float   y; 
 
  /* reset result variable */ 
  y = 0; 
   
  /* evaluate filter */ 
  for(k=0; k<FIR_taps; k++) { 
   
    /* contribution of kth filter coefficient */ 
    y += b[k]*inp[read_idx]; 
    
    /* adjust read index (backwards -> decrement) */ 
    read_idx = ringIndex_Dec(read_idx); 
 
  } 
   
  /* return filter output value */ 
  return (signed short)y; 
 
} 
 
 
//******** FIR_Init ***************  
// initialise filter ring buffer 
void FIR_Init(void) { 
 
  ringBuffer_Init(FIR_taps); 
 
} 

 
timer 7 – interrupt handler 
 
/* interrupt handler, timer 7 (vector 15) */ 
__interrupt void TOC7_ISR(void) { 
 
signed short  filtout; 
 
  // timing - IN 
  PORTB ^= 0x80;          // toggle port B bit 7 
 
 
  /* payload - start */ 
  { 
     
    short Data_scaled; 
     
    /* rescale input data to balanced range: -0x200 ... 0x1FF */ 
    Data_scaled = (signed)ADC_Data - 0x200; 
         
    /* store scaled input value in the ring buffer */ 
    inp[current_input_idx] = (float)Data_scaled; 
 
    /* increment current_input index */ 
    current_input_idx = ringIndex_Inc(current_input_idx); 
   
    /* apply filter */ 
    filtout = FIR_filter(current_input_idx); 
   
    /* rescale output data to DAC range: 0 ... 0x3FF */ 
    Data_scaled = (unsigned int)(filtout + 0x200); 
     
    /* copy value to DAC */ 
    DAC_Write(Data_scaled); 
     
  } 
  /* payload - end */ 
 
   
  /* acknowledge interrupt */ 
  TFLG1 = 0x80;          // clears C7F 
   
  // timing - OUT 
  PORTB ^= 0x80;          // toggle port B bit 7 
 
} 
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Testing the filter 
 
To measure the timing of a real-time system you need an oscilloscope. At the 
beginning of the timer ISR, one of the digital I/O lines is set high; the line is reset to low 
at the end of the ISR. This produces a pulse train whose period and pulse width 
depend on the timer value and the duration of the control algorithm, respectively. 
Measure this pulse train. You should observe a signal similar to the one shown in 
Figure LM6-13. Does this result surprise you? What does this say about the efficiency 
of our filter? 
 
Can you think of a way of improving this situation? (Hint: It would be good if we were 
able to cut down on the number of multiplications within the filter loop. There is a 
property of the filter coefficients which we have ignored so far – try to exploit this 
property). 
 
 

 
 

Figure LM6-13    Measuring the execution time of the filter algorithm 
 
 
Multiplications are time-intensive operations. This is particularly true when working on 
hardware platforms which do not support floating-point arithmetic. Unlike digital signal 
processors (DSP), most microcontrollers do not include a dedicated floating-point unit 
(FPU) and are therefore limited to fixed-point operations using integer numbers or the 
software based emulation of a FPU. IEEE standard 754 defines single precision (32-
bit) and double precision (64-bit) floating-point arithmetic. This standard is the basis of 
the software based floating-point support provided in ANSI-C (data types float and 
double, implementation of arithmetic functions, complex numbers). 
 
Inspect the filter coefficients (file: myFIRcoefficients.txt). Can you think of a way of 
turning these fractional coefficients into integer numbers? What dynamic range is 
covered by our coefficients (cf. DSP lecture notes, p. 94)? What dynamic range can be 
achieved on a 16-bit fixed-point architecture? Notice that these numbers carry a sign 
bit. Can we realise our filter as fixed-point algorithm without loss of information / the 
introduction of additional noise? (Hint: Load your coefficients into the MATLAB 
workspace and use the functions min, max and log10). 
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The dynamic range covered by the filter coefficients can be visualised using the 
MATLAB commands hist: 
 
>> b_pos = b(find(b>0)); 
>> b_scaled = b_pos/min(b_pos); 
>> hist(b_scaled, 128) 
>> xlabel('FP coefficient') 
>> ylabel('frequency') 
>> title('Number of occurrences of filter coefficients') 
>> set(gca, 'XScale', 'log') 

 
This produces the following plot (Figure LM6-14): 
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Figure LM6-14    Frequency of individual filter coefficients 
 
 
It seems that most of the coefficients fall within a narrow band from 1 to 100. This can 
be used to further reduce the number of filter coefficients by combining neighbouring 
coefficients to their average value. However, be aware that such a strategy results in 
loss of information / the introduction of noise. 
 
 
If you are keen, you could have a go at implementing the filter as fixed-point program: 
Re-scale all coefficients to turn them into integer numbers. Modify the structure of the 
ring buffer (float ջ integer) as well as source file fir.c. Measure the time it takes to 
update this filter. Compare the file sizes of the downloadable S19 file (/bin/Monitor.sx) 
of your floating-point filter program to that of the fixed-point realisation. 
 
 
Slowly increase the input frequency from DC to the sample frequency (200 Hz). You 
should observe a narrow pass band at f0 = 20 Hz. If your filter works properly the 
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output signal should be attenuated by at least 60 dB (factor 1/1000) when the 
frequency is below 15 Hz or above 25 Hz. 
 
What happens when the input frequency reaches 180 Hz? Can you explain this 
phenomenon? What other input frequencies would lead to the same effect? Verify your 
answer by tuning the input signal into the suggested frequencies. 
 
Sketch the frequency spectrum of your digital filter in the range from 0 to 500 Hz. 
 
 

 
 
 
What would be the right thing to do in order to avoid the above phenomenon? 
 
 
 
 
 

Concluding remarks 
 
FIR filter have a number of attractive properties, e. g. their linear phase within the 
pass-band as well as their unconditioned stability and robustness. The filter is 
essentially an open loop system which computes a weighted average of the current 
and past input values. 
 
This investigation should have made you aware of the fact that the number of filter 
coefficients can become quite substantial when the filter is made very selective. The 
evaluation of an FIR filter with many coefficients places a considerable load on the 
CPU of a small microcontroller. Ultimately, the bandwidth of a digital control system is 
limited by the number of processor cycles between any two sample instances. The 
evaluation of our FIR band-pass filter with 127 coefficients took around � of the 
available period (Figure LM6-13). 
 
A way to remedy this situation is to use a more suitable hardware platform such as a 
DSP processor or a microcontroller with a MAC unit. Alternatively, the FIR filter could 
be replaced by an Infinite Impulse Response (IIR) filter. An IIR filter algorithm 
combines the measured input signal with the computed filter output signal. This 
feedback structure can be modelled with fewer coefficients than would be needed to 
realise a corresponding FIR filter.  
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Use the MATLAB command fdatool to design an Elliptic IIR filter with the same band-
pass specification as used for the FIR filter above. What is the required filter order? 
Export the filter coefficients to the MATLAB workspace. The default IIR filter structure 
of fdatool is sometimes referred to ‘Direct Form II, Second Order Sections’. The use of 
second-order sections (SOS) leads to a filter realisation with increased robustness. 
Display matrix SOS and count the number of coefficients – this should be a number 
much smaller than 127. 
 
Download the following IIR filter implementation from myUni: 
 

Mechatronics IIIM ջ Course Documents ջ Tutorials ջ 9S12 ջ IIR 
 
 
Run the filter program and verify its correct operation (cut-off frequencies, pass-band 
attenuation, stop-band attenuation, etc.). 
 
Determine the time it takes to evaluate the IIR filter. This can be done by measuring 
the ISR execution time signal on port B, pin 7 (PB7). You should observe a scope 
trace similar to the one shown in Figure LM6-15. 
 
 

 
 

Figure LM6-15    Evaluating the execution time of the IIR filter 
 
 
The same filter performance is now achieved much more efficiently. 
 
However, it should be pointed out that the use of feedback in the IIR filter often leads 
to a system with a relatively slowly transient response: It takes some time until the 
internally circulating signals have settled onto a steady state. You can observe this by 
adjusting the frequency of the input signal to the centre of the pass-band (20 Hz) and 
then quickly changing it to a frequency within the stop-band (e. g. f > 25 Hz). With the 
IIR filter a settling time of around 4 seconds is observed. By comparison, the frequency 

step response of the FIR filter settles in approximately ̍s ≈ 1 second. 
 


